K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I don't now

sorry

.....................

27 tháng 7 2018

bn tham khảo ở đây nhé : 

https://olm.vn/hoi-dap/question/1016726.html

26 tháng 9 2018

a) G là trọng tâm của ABCD <=> vtGA + vtGB + vtGC + vtGD = vt0 (1*) 
A' là trọng tâm của BCD <=> vtA'B + vtA'C + vtA'D = vt0 
<=> 3.vtA'G + vtGB + vtGC + vtGD = vt0 (2*) (chen điểm G vào biểu thức trên) 
lấy (1*) - (2*): vtGA - 3.vtA'G = vt0 <=> vtGA = 3.vtA'G 
đẳng thức này chứng tỏ vtGA và vtA'G cùng hướng => G nằm trên đoạn AA' 

tương tự có B' là trọng tâm của ACD <=> 3.vtB'G + vtGA + vtGC + vtGD = vt0 (3*) 
lấy (1*) - (3*): vtGB - 3vtB'G = vt0 <=> vtGB = 3vtB'G 
=> G nằm trên đoạn BB' 
tiếp tục cho 2 phần còn lại 
=> G là điểm chung của các đoạn AA', BB', CC', DD' 

b) từ biểu thức trên có: vtGA = -3.vtGA' 
=> G chia đoạn AA' theo tỉ số k = -3 
các đoạn kia tương tự đều cùng tỉ số k = -3 

c) từ cm trên ta có: 
vtGA = -3vtGA' 
vtGB = -3vtGB' 
vtGC = -3vtGC' 
vtGD = -3vtGD' 

=> vtGA+vtGB+vtGC+vtGD+vtGD = -3(vtGA'+vtGB'+vtGC'+vtGD') (**) 
mà G là trọng tâm của ABCD nên vtGA+vtGB+vtGC+vtGD = vt0 
(**) => vtGA'+vtGB'+vtGC'+vtGD' = vt0 => G là trọng tâm của A'B'C'D' 

25 tháng 9 2016

Khó wá! Ai giải giúp mk vs.

Ai nhanh nhất mk k cho!

5 tháng 11 2017

A B C D A' B' C' D' N M P Q I

Gọi P và Q lần lượt là trung điểm của AC' và CA'.

CC' giao MN tại I

Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC

=> PM là đường trung bình tam giác AC'C => PM//CC'

hay C'I//PM

C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)

Mà P là trung điểm AC' => C' là trung điểm PN.

Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN

=> CC' đi qua trung điểm của MN (1)

Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)

Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)

Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).

13 tháng 7 2021

Bn ơi!

Chứng minh AA' đi qua trung điểm MN làm cách nào vậy ạ!