K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

A B C D I J

Áp dụng tính chất trung điểm ta có:
Do J là trung điểm của BD nên \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}\).
Theo quy tắc ba điểm: \(\overrightarrow{IB}=\overrightarrow{IA}+\overrightarrow{AB}\)
\(\overrightarrow{ID}=\overrightarrow{IC}+\overrightarrow{CD}\).
Vì vậy: \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IC}+\overrightarrow{CD}\)
\(=\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{AB}+\overrightarrow{CD}\right)\)
\(=\overrightarrow{AB}+\overrightarrow{CD}\) (ĐPCM).

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

22 tháng 7 2018

không sao đâu ; mk cam đoan là đúng hoàn toàn

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {AC}  + \overrightarrow {BD} = \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND}  \\=  \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) \\=  \overrightarrow 0  + 2\overrightarrow {MN}  + \overrightarrow 0  = 2\overrightarrow {MN} \) (đpcm)                                                             

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

\(\)\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {ND} \)

\(\left( {\overrightarrow {BM}  + \overrightarrow {AM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} \)

Mặt khác ta có: \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {MN} \)

Suy ra \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

Cách 2: 

\(\begin{array}{l}
\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \\
\Leftrightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \\
\Leftrightarrow \overrightarrow {DC} = \overrightarrow {DC} (đpcm)
\end{array}\)

30 tháng 3 2017

N là trung điểm của CD:

2= + (1)

Theo quy tắc 3 điểm, ta có:

= + (2)

= + (3)

Từ (1), (2), (3) ta có: 2= +++

vì M là trung điểm của Ab nên: + =

Suy ra : 2 = +

Chứng minh tương tự, ta có 2 = +

Chú ý: Sau khi chứng minh 2 C = + ta chỉ cần chứng minh thêm + = + cũng được

Ta có: + = +++

= +++= ++

= nên ta có: +=+

và 2= + = +

NV
13 tháng 1 2021

Chắc chắn là đề bài sai rồi

Vế trái là 1 đại lượng vô hướng

Vế phải là 1 đại lượng có hướng (vecto)

Hai vế không thể bằng nhau được

14 tháng 1 2021

Em viết nhầm ạ, vế phải đó là 

\(\overrightarrow{IJ}^2\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

NV
24 tháng 8 2021

\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{CB}\)

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OE}+\overrightarrow{EA}\right)+\left(\overrightarrow{OF}+\overrightarrow{FB}\right)+\left(\overrightarrow{OE}+\overrightarrow{EC}\right)+\left(\overrightarrow{OF}+\overrightarrow{FD}\right)\)

\(=2\left(\overrightarrow{OE}+\overrightarrow{EF}\right)+\left(\overrightarrow{EA}+\overrightarrow{EC}\right)+\left(\overrightarrow{FB}+\overrightarrow{FD}\right)\)

\(=2.\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)

27 tháng 7 2019
https://i.imgur.com/Uf6GQFM.jpg
NV
23 tháng 9 2020

\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}\)

\(=\overrightarrow{EI}+\overrightarrow{IA}+\overrightarrow{EJ}+\overrightarrow{JB}+\overrightarrow{EI}+\overrightarrow{IC}+\overrightarrow{EJ}+\overrightarrow{JD}\)

\(=2\left(\overrightarrow{EI}+\overrightarrow{EJ}\right)+\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}\)