Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có EB = EA, FB = FC (gt)
⇒ EF là đường trung bình của ΔABC
⇒EF // AC và EF = AC/2 (1)
HD = HA, GD = GC
⇒ HG là đường trung bình của ΔADC
⇒ HG // AC và HG = AC/2 (2)
Từ (1) và (2) suy ra EF // HG và EF = HG
⇒ Tứ giác EFGH là hình bình hành (*)
EA = EB, HA = HD ⇒ EH là đường trung bình của ΔABD ⇒ EH // BD.
Mà EF // AC, AC ⊥ BD
⇒ EH ⊥ EF ⇒ Ê = 90º (**)
Từ (*) và (**) suy ra EFGH là hình chữ nhật.
Sử dụng tính chất đường trung bình của tam giác
Chứng minh: HEFG là hình bình hành và EF ^ HE
Þ HEFG là hình chữ nhật.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
xét tam giác ABC có :
EA = FB (gt)
FB = FC (gt)
\(\Rightarrow EF\) là đường trung bình
\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)
chứng minh tương tự HG là đường trung bình tam giác ADC
HG // AC và HG = \(\dfrac{1}{2}\) AC (2)
từ (1) và (2) ta suy ra EF // HG và EF = HG
\(\Rightarrow\) EFGH là hình bình hành (3)
ta có : EF // AC
EH // BD ( EH là đường trung bình tam giác ABD )
AC \(\perp\) BD ( gt )
\(\Rightarrow\) EF \(\perp\) EH
hay góc E = 90 độ (4)
từ (3) và (4) ta suy ra EFGH là hình chữ nhật
Bài giải:
Ta có EB = EA, FB = FC (gt)
Nên EF là đường trung bình của ∆ABC
Do đó EF // AC
HD = HA, GD = GC
Nên HG là đường trung bình của ∆ADC
Do đó HG // AC
Suy ra EF // HG
Tương tự EH // FG
Do đó EFGH là hình bình hành.
EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900
Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.
THam khảo nha :
Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.
Lời giải:
Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.
Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH. (1)MQ∥BH ; MQ=12BH. (1)
Ta có:
ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^
ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^
Do đó ˆBAH=ˆCAF.BAH^=CAF^.
Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)
⇒ˆFCA=ˆBHA⇒FCA^=BHA^
Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.
Khi đó ˆOCA=ˆIHOOCA^=IHO^
Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))
Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘
Do đó IH⊥IOIH⊥IO hay BH⊥CF. (2)BH⊥CF. (2)
Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH. (3)CF=BH. (3)
Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.
★★★★★★★★★★★★★★★★
Quay lại bài toán. Gọi MM là trung điểm ACAC
Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.
Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)
Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.
b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG
Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)
Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘
Do đó tam giác MPQMPQ vuông cân tại MM
Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.
Suy ra tứ giác MPNQMPNQ là hình vuông.