K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

A B C D O a^2 b^2 M N  

(Hình ảnh chỉ mang tính chất minh họa)

a) Kẻ DM và CN vuông góc với AB

=> MN = CD (Theo cách vẽ)

=> DC - AB = MN - AB = MA + BN

=> DC - AB = MA + BN

Tam giác vuông MAD và NBC vuông lần lượt tại M,N

=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)

=> DC - AB = MA + BN < AD + BC (ĐPCM

18 tháng 8 2019

a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A ) 

\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)

b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)

\(\Rightarrow\)\(BM+CN\le BC\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A 

c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A