K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HN
14 tháng 5 2016
a, xét tam giác AOB và tam giác DOC có:
góc AOB= góc COD
góc ABD=góc ACD
do đó : tam giác AOB đồng dạng với tam giác DOC(g-g)
b, theo cm câu a: tam giác AOB đồng dạng với tam giác DOC
=> \(\frac{AO}{OD}=\frac{OB}{OC}\)
xét tam giác AOD và tam giác BOC có:
\(\frac{OA}{OD}=\frac{OB}{OC}\)
góc AOD= góc BOC(2 góc đối đỉnh)
do đó: tam giác AOD đồng dạng với tam giác BOC(c-g-c)
c, xét tam giác DBE và tam giác CAE có:
góc DEC chung
góc EDB=góc ACE( 2 góc tương ứng của tam giác AOD đồng dạng với tam giác BOC)
do đó: tam giác DBE đồng dạng với tam giác CAE(g-g)
=>\(\frac{EB}{EA}=\frac{ED}{EC}\)
\(\Rightarrow EA.ED=EB.EC\)
*TH1: AD và BC cắt nhau về phía AB.
a. -Ta có: Các góc đối bù nhau (gt).
=>\(\left[{}\begin{matrix}\widehat{BAD}+\widehat{BCD}=180^0\\\widehat{ABC}+\widehat{ADC}=180^0\end{matrix}\right.\).
- Ta có: \(\widehat{BAD}+\widehat{BAE}=180^0\) (kề bù).
Mà \(\widehat{BAD}+\widehat{BCD}=180^0\) (gt).
=>\(\widehat{BAE}=\widehat{BCD}\).
- Xét △EAB và △ECD có:
\(\widehat{E}\) là góc chung.
\(\widehat{BAE}=\widehat{ECD}\) (cmt)
=>△EAB ∼ △ECD (g-g).
=>\(\dfrac{AE}{AB}=\dfrac{CE}{CD}\) (2 tỉ lệ tương ứng).
=>\(AE.CD=EC.AB\).
- Xét △EAC và △EBC có:
\(\widehat{E}\) là góc chung.
\(\dfrac{AE}{EC}=\dfrac{EB}{DE}\) (△EAB ∼ △ECD)
=>△EAC ∼ △EBD (c-g-c).
b.- Xét △ADO và △BCO có:
\(\widehat{ADO}=\widehat{BCO}\) (△EAC ∼ △EBD).
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh).
=>△ADO ∼ △BCO (g-g).
=> \(\dfrac{AO}{BO}=\dfrac{DO}{CO}\) (2 tỉ lệ tương ứng).
- Xét △ABO và △DCO có:
\(\widehat{AOB}=\widehat{DOC}\) (đối đỉnh).
\(\dfrac{AO}{BO}=\dfrac{DO}{CO}\) (cmt).
=>△ABO ∼ △DCO (c-g-c).
=>\(\widehat{ABO}=\widehat{DCO}\) (2 góc tương ứng) hay \(\widehat{ABD}=\widehat{DCA}\).
*TH2: AD và BC cắt nhau về phía DC. Tương tự như TH1, chỉ thay đổi vài chỗ.
a: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét ΔEAC và ΔEBD có
\(\widehat{ECA}=\widehat{EDB}\left(=\dfrac{sđ\stackrel\frown{AB}}{2}\right)\)
Do đó: ΔEAC\(\sim\)ΔEBD
Suy ra: \(\dfrac{AE}{BE}=\dfrac{EC}{ED}\)
hay \(\dfrac{AE}{EC}=\dfrac{BE}{ED}\left(1\right)\)
Xét ΔEAB và ΔECD có
\(\widehat{E}\) chung
\(\widehat{EAB}=\widehat{ECD}\)
Do đó: ΔEAB\(\sim\)ΔECD
Suy ra: \(\dfrac{BE}{DE}=\dfrac{AB}{CD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{AB}{CD}\)
hay \(AE\cdot CD=AB\cdot EC\)
b: Ta có: ABCD là tứ giác nội tiếp
nên \(\widehat{ABD}=\widehat{DCA}\)(hai góc nội tiếp cùng chắn cung AD)