Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
ta có : \(\widehat{A}+\widehat{B}=180\)=> AD // BC ( 2 góc trong cùng phía có tổng 180) => ABCD là hình thang
mặt khác: CB=CD => ABCD là hình bình hành ( hình thang có 2 cạnh kề bằng nhau là hình bình hành)
Dễ thấy AC là đường chéo của ABCD => AC là tia phân giác của \(\widehat{A}\)(đường chéo của hình bình hành là tia pg của 2 đỉnh )
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét t/g ABC và t/g AEC có :
\(AB=AE\)
\(\widehat{BAC}=\widehat{EAC}\)( Vì AC là tia phân giác của góc BAD )
\(AC\) cạnh chung
\(\Rightarrow\)t/g ABC t/g AEC ( c-g-c )
\(\Rightarrow\)\(BC=CE\)và \(\widehat{ABC}=\widehat{AEC}\)
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360độ\)
Mà \(\widehat{A}+\widehat{C}=180độ\)
\(\Rightarrow\widehat{B}+\widehat{D}=180độ\)
Từ \(\widehat{ABC};\widehat{AEC}\)\(và\)\(\widehat{DEC}+\widehat{AEC}=180độ\)
\(\Rightarrow\widehat{DEC}=\widehat{D}\)
\(Nên\)t/g CDE cân tại C \(\Rightarrow\)\(DC=CE\)
\(Từ\)\(BC=CE\)\(và\)\(DC=CE\)
\(\Rightarrow\)\(CB=CD\left(đpcm\right)\)