Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://h.vn/hoi-dap/question/834717.html
Tham khảo ở link này
Mình gửi cho
Học tốt!!!!!!!!!!!!
Tham khảo nha, tuy ko trùng đề lắm
Gọi trung điểm dường cheo AC, BD lần lượt là M, N
MN cắt AB, CD lần lượt ở I, K
Ta cần chứng minh góc NIB = góc MKC
Lấy H là trung điểm BC. Nối MH, NH.
Xét tam giac ABC có AM = MC ; CH = HB => MH là đường trung bình tam giác ABC => MH =AB/2 (1) và MH // AB => góc KMH = góc INH (2)
chung minh tuong tu ta có: NH = CD/2 (3)và NH // CD =>góc INH = góc MKC (4)
Mat khac từ (1)và (3) ta có NH = MH vì đều bằng một nửa AB và CD => tam giác MHN cân tại H => góc NMH = góc MNH =>góc KMH = góc INH (vì kể với 2 góc bằng nhau) (5)
Từ (3)(4)(5) => góc MKC = góc NIB (đpcm)
gọi M,N lần lượt là t/đ của AD và BC.
gọi O là t/đ của BD=>OM là đg trung bình của tg ABD=>OM=1/2AB (1)và OM//AB.
c/m t/t ta có: ON =1/2DC (2) , ON//DC
Mà AB=CD(gt) (3)
từ (1),(2),(3) => OM=ON=>tg OMN cân tại O=>OMN=ONM (*)
Mặt khác :ONM=DFM(vì On//DC) và OMN=AEM(vì AB//OM) (**)
từ (*) và (**) => DFM=AEM (đpcm)