K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{CDB}\) là góc nội tiếp chắn cung CB

mà \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CB}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

b: Xét ΔABD có AB=AD

nên ΔABD cân tại A

=>\(\widehat{ABD}=\widehat{ADB}\)

=>\(\widehat{ABD}=\widehat{BDC}\)

hay AB//CD

=>ABCD là hình thang

mà ABCD là tứ giác nội tiếp

nên ABCD là hình thang cân

14 tháng 7 2016

Bài 1:

Giải: Vì AB // CD

    => A + D =180

    mà A = 3D => 3D + D = 180o

                        =>  4D = 180o

                        =>   D = 45o   => A = 135o

Ta có: AB // CD => B + C = 180o

        mà B - C = 30o  hay B = C + 30o

=> C + 30+ C = 180o

=>  2C = 150o  => C = 75o  => B = 105o

 

22 tháng 9 2016

Bài 1:

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)

mà \(\widehat{A} = 3 \widehat{D}\) (gt)

\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)

mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)

\(\Rightarrow\)\(2 \widehat{B} = 210^0\)

\(\Rightarrow\)\(\widehat{B} = 105^0\)

\(\Rightarrow\)\(\widehat{C} = 75^0\)

Vậy.......

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

26 tháng 7 2016

Tách ra đi bạn

9 tháng 6 2016

Để có giá trị nhỏ nhất, số x phải là số bé nhất

Nếu là 0: 0 không nhân được với 0 (0^2)

Nếu là 1: Đáp ứng điều kiện

Phép tính trên (sau khi tính) có giá trị là 12 (1 + 1 + 10)

Đáp số: 12

9 tháng 6 2016

x2 + 5x + 10 

= x2 + 2.x. \(\frac{5}{2}\)+ \(\frac{25}{4}\)     - 3,75

= ( x + \(\frac{5}{2}\))2 - 3,75 >_ -3,75

Vậy min A = - 3,75 khi x + \(\frac{5}{2}\)     = 0

                                  => x = \(\frac{-5}{2}\)

28 tháng 8 2016

Có: \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (BC là cạnh chung)

\(\Rightarrow\Delta DBC=\Delta ECB\)

\(\Rightarrow\) AE//AB = AD//AC

\(\Rightarrow\) ED//BC

Từ a) có: \(\widehat{EDB}=\widehat{DBC}\) (so le trong)

\(\widehat{DBC}=\widehat{EBD}\) (BD là tia phân giác)

\(\Rightarrow\widehat{EDB}=\widehat{DBC}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\) cân tại E

\(\Rightarrow BE=ED\)

AI cắt ED tại J', ta cm J' ≡ J 
Từ tính chất tam giác đồng dạng ta có: 
EJ'/BI = AE/AB = ED/BC = ED/2BI 
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 
Vậy A,I,J thẳng hàng 
*OI cắt ED tại J" ta cm J" ≡ J 
hiễn nhiên ta có: 
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 
mặt khác: 
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 
=> tgiác J"DO đồng dạng với tgiác IBO 
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 
Tóm lại A,I,O,J thẳng hàng