Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 22 :
Vì ABCD là hình bình hành
=> AB = DC
Mà M là trung điểm AB
=> AM = MB
Mà N là trung điểm DC
=> DN = NC
=> AM = DN
Mà AB//DC
=> DN//AM
=> AMND là hình bình hành
Chứng minh tương tự ta có : MBCN là hình bình hành
Ta có : \(\hept{\begin{cases}\widehat{ABC}=70^0\\\widehat{BCD}=110^0\end{cases}\Rightarrow\widehat{ABC}+\widehat{BCD}=180^0}\)
Mà 2 góc này ở vị trí trong cùng phía
nên AB // CD
Ta lại có AD // BC và AB // CD => ABCD là HBH
tứ giác ABCD có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay \(2\widehat{A}+2\widehat{D}=360^o\)
\(\Rightarrow2\left(\widehat{A}+\widehat{D}\right)=360^o\)
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
\(\Rightarrow AB//CD\)
Vậy tứ giác ABCD là hình thang. Hình thang này có 2 góc kề 1 đáy bằng nhau nên là hình thang cân.
Chưa thể chắc chắn là hình bình hành. Bởi vì mới có điều kiện AB = CD thì phải cần thêm điều kiện AB // CD nữa thì tứ giác ABCD mới được coi là hình bình hành. Nếu AB // CD thì rõ ràng góc D + góc A = góc B + góc C = 180 độ . Nhưng ta không thể khẳng định góc C và góc D bằng nhau , do vậy ta chưa kết luận được ABCD là hình bình hành.
Uả toán gì lạ thế .
Đây là HBH nhưng nhìn lại thì không thể kết luận .