Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi \(O\)là giao điểm \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)
Cộng lại vế theo vế ta được:
\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).
b) Theo bất đẳng thức tam giác:
\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)
Cộng lại vế theo vế ta được:
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).
Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.
a) Gọi O la giao điểm AC và BD
ta có
AO+BO>AB ( bất đẳng thức trong tam giác AOB)
OC+OD>CD (bất đẳng thức trong tam giác OCD)
=> AO+BO+OC+OD>AB+CD
=>AC+BD>AB+CD
b) ta có
AO+OD >AD (bất đẳng thức trong tam giác AOD)
OC+OB >BC(bất đẳng thức trong tam giác BOC)
=>AO+OD+OC+OB>AD+BC
=> AC+BD>AD+BC
a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC=AD/BC
Do đó: ΔABD∼ΔBDC
b: Ta có: ΔABD=ΔBDC
nên \(\widehat{ABD}=\widehat{BDC}\)
hay AB//CD
=>ABCD là hình thang
thiếu đề bài
Cho tứ giác ABCD cm
CMR:
AB<NC+CD+AD
AC+BD<AB+BC+CD+AD
- Áp dụng bđt trong tam giác , ta có :
AB < OB + OA ; BC < OB + OC ; CD < OC + OD ; AD < OA + OD
=> AB +BC + CD + AD < 2(OA + OB + OC + OD)
=> (AB+BC+CD+AD)/2<AC+BD (1)
- AB + BC > AC ; BC + CD > BD ; CD + AD > AC ; AB + AD > BD
=> 2(AB + BC + CD + DA) > 2(AC + BD)
=> AB + BC + CD + DA > AC + BD (2)
Từ (1) và (2) suy ra đpcm
~hOK TỐT~
Câu hỏi của Nguyễn Tuấn Anh - Toán lớp 8 | Học trực tuyến
Tham khảo nhé,đề bài bạn còn thiếu gì không?