K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

S A B C H

SH vuông góc (ABC) => AC vuông góc SH, mà AC vuông góc BH nên AC vuông góc (SHB)

=> SB vuông góc AC, kết hợp với SB vuông góc SA => SB vuông góc SC => SA,SB,SC đôi một vuông góc

Từ đó, theo định lì Pytago và BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\):

\(6\left(SA^2+SB^2+SC^2\right)=3\left(AB^2+BC^2+CA^2\right)\ge3.\frac{\left(AB+BC+CA\right)^2}{3}=\left(AB+BC+CA\right)^2\)

27 tháng 5 2021

lol Vc lol

20 tháng 11 2018

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

TenAnh1 TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) E = (-3.34, -5.86) E = (-3.34, -5.86) E = (-3.34, -5.86) F = (12.02, -5.86) F = (12.02, -5.86) F = (12.02, -5.86) G = (-3.7, -5.88) G = (-3.7, -5.88) G = (-3.7, -5.88) H = (11.66, -5.88) H = (11.66, -5.88) H = (11.66, -5.88) I = (-3.74, -5.62) I = (-3.74, -5.62) I = (-3.74, -5.62) J = (11.62, -5.62) J = (11.62, -5.62) J = (11.62, -5.62) A'

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

28 tháng 10 2018

3 tháng 3 2017

18 tháng 5 2021

undefined

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)      

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ A là hình chiếu của A trên mặt phẳng (ABC)

\( \Rightarrow \) HA là hình chiếu của SA trên mặt phẳng (ABC)

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ B là hình chiếu của B trên mặt phẳng (ABC)

\( \Rightarrow \) HB là hình chiếu của SB trên mặt phẳng (ABC)

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ C là hình chiếu của C trên mặt phẳng (ABC)

\( \Rightarrow \) HC là hình chiếu của SC trên mặt phẳng (ABC)

b, Do H là hình chiếu của S trên mặt phẳng (ABC) \( \Rightarrow SH \bot (ABC)\).

Mà  \(AB,AC,BC \subset (ABC) \Rightarrow SH \bot AB,SH \bot AC,SH \bot BC\).

Ta có: \(\left\{ \begin{array}{l}SA \bot BC\\SH \bot BC\\SA \cap SH = S\\SA,SH \subset (SAH)\end{array} \right. \Rightarrow BC \bot (SAH) \Rightarrow BC \bot AH\,(1)\)

Tương tự \(\left\{ \begin{array}{l}SC \bot AB\\SH \bot AB\\SC \cap SH = S\\SC,SH \subset (SCH)\end{array} \right. \Rightarrow AB \bot (SCH) \Rightarrow AB \bot CH\,(2)\)

TỪ (1) và (2) \( \Rightarrow \) H là trực tâm của tam giác ABC.

Vì \(\left\{ \begin{array}{l}AB \bot (SCH)\\SC \subset (SCH)\end{array} \right. \Rightarrow AB \bot SC\)

28 tháng 9 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi A’ là giao điểm của AH và BC. Ta cần chứng minh ba điểm S, K, A’ thẳng hàng.

 Vì H là trực tâm của tam giác ABC nên AA′ ⊥ BC. Mặt khác theo giả thiết ta có: SA ⊥ (ABC), do đó SA ⊥ BC.

 Từ đó ta suy ra BC ⊥ (SAA′) và BC ⊥ SA′. Vậy SA’ là đường cao của tam giác SBC nên SA’ là phải đi qua trực tâm K. Vậy ba đường thẳng AH, SK và BC đồng quy.

 b) Vì K là trực tâm của tam giác SBC nên BK ⊥ SC (1)

 Mặt khác ta có BH ⊥ AC vì H là trực tâm của tam giác ABC và BH ⊥ SA vì SA ⊥ (ABC).

 Do đó BH ⊥ (ABC) nên BH ⊥ SC (2).

 Từ (1) và (2) ta suy ra SC ⊥ (BHK). Vì mặt phẳng (SAC) chứa SC mà SC ⊥ (BHK) nên ta có (SAC) ⊥ (BHK).

 c) Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Mặt phẳng (BHK) chứa HK mà HK ⊥ (SBC) nên (BHK) ⊥ (SBC).

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘