K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

17 tháng 12 2019

19 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi N = DK ∩ AC; M = DJ ∩ BC.

Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).

Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.

Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK)

28 tháng 8 2023

a) Để tìm giao điểm của đường thẳng SB và mặt phẳng (ABC), chúng ta cần tìm điểm giao nhau của đường thẳng SB và mặt phẳng (ABC). Điểm này sẽ nằm trên cả hai đường thẳng SB và mặt phẳng (ABC). Để tìm điểm này, ta có thể sử dụng phương pháp giao điểm giữa đường thẳng và mặt phẳng. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng SB, có thể được xác định bằng cách sử dụng hai điểm S và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng SB và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

b) Tương tự, để tìm giao điểm của đường thẳng HB và mặt phẳng (SAC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng HB, có thể được xác định bằng cách sử dụng hai điểm H và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HB và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

c) Để tìm giao điểm của đường thẳng BK và mặt phẳng (SAC), ta cũng có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng BK, có thể được xác định bằng cách sử dụng hai điểm B và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng BK và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

d) Tương tự, để tìm giao điểm của đường thẳng HK và mặt phẳng (ABC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng HK, có thể được xác định bằng cách sử dụng hai điểm H và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HK và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

loading...  loading...  

11 tháng 9 2023

Để tìm giao điểm của SB và mp(ABC), ta cần tìm giao điểm của hai đường thẳng SB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Vì I là trung điểm BC, ta có thể xác định được mặt phẳng ABC. Sau đó, ta tìm giao điểm của đường thẳng SB và mặt phẳng ABC.

Để tìm giao điểm của HB và mp(SAC), ta cần tìm giao điểm của hai đường thẳng HB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng HB và mặt phẳng SAC.

Để tìm giao điểm của BK và mp(SAC), ta cần tìm giao điểm của hai đường thẳng BK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng BK và mặt phẳng SAC.

Để tìm giao điểm của HK và mp(ABC), ta cần tìm giao điểm của hai đường thẳng HK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Tương tự như trên, ta xác định được mặt phẳng ABC và sau đó tìm giao điểm của đường thẳng HK và mặt phẳng ABC.

29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang

 

 

 

25 tháng 5 2017

a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).

Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)

\(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

24 tháng 1 2018