K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Chúng ta biết rằng tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Vì vậy, ta có thể xem tứ diện OABC là một hình chữ nhật với cạnh OA, OB, OC.

Gọi SABC là diện tích của hình chữ nhật OABC. Ta có:

SABC = OA x OB

Gọi SHBC là diện tích của tam giác HBC. Ta có:

SHBC = 1/2 x HB x BC

Vì tứ diện OABC là một hình chữ nhật, nên ta có:

SOAB = OA x OB

Vậy, ta có:

(SOAB)2 = (OA x OB)2

= OA2 x OB2

= SABC x SHBC

= SABC + SHBC

Vậy, ta đã chứng minh được rằng (SOAB)2 = SABC + SHBC.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {OBC} \right);BC \subset \left( {OBC} \right) \Rightarrow OA \bot BC\)

Trong (OBC) kẻ \(OD \bot BC\)

\(\begin{array}{l} \Rightarrow BC \bot \left( {OAD} \right);BC \subset \left( {ABC} \right) \Rightarrow \left( {OAD} \right) \bot \left( {ABC} \right)\\\left( {OAD} \right) \cap \left( {ABC} \right) = AD\end{array}\)

Trong (OAD) kẻ \(OE \bot AD\)

\( \Rightarrow OE \bot \left( {ABC} \right) \Rightarrow d\left( {O,\left( {ABC} \right)} \right) = OE\)

Xét tam giác OBC vuông tại O có

\(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {2a} \right)}^2}}} = \frac{3}{{4{a^2}}} \Rightarrow OD = \frac{{2a\sqrt 3 }}{3}\)

Xét tam giác OAD vuông tại O có

\(\frac{1}{{O{E^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}}} = \frac{7}{{4{a^2}}} \Rightarrow OE = \frac{{2a\sqrt 7 }}{7}\)

Vậy \(d\left( {O,\left( {ABC} \right)} \right) = \frac{{2a\sqrt 7 }}{7}\)

1 tháng 1 2020

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

27 tháng 5 2018

Đáp án C

18 tháng 8 2018

18 tháng 6 2019

5 tháng 10 2018