Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Xét (PQR) và (ACD) có:
Q là điểm chung
AC // PR
⇒ giao tuyến (PQR) và (ACD) là Qx song song với AC
mp(PQR) và mp(ACD) lần lượt chứa hai đường thẳng song song PR // AC
⇒ (PQR) ∩ (ACD) = Qt là đường thẳng song song với AC và PR.
Gọi Qt ∩ AD = S
⇒ S = AD ∩ (PQR).
b) PR ∩ AC = I.
Có : Q ∈ (ACD) ∩ (PQR)
+ (ABC) ∩ (PQR) = PR.
+ (ACD) ∩ (ABC) = AC
+ (ACD) cắt (PQR)
⇒ PR; AC và giao tuyến của (ACD) và (PQR) đồng quy
Mà PR ∩ AC = I
⇒ I ∈ (ACD) ∩ (PQR).
⇒ (ACD) ∩ (PQR) = QI.
trong (ACD): QI ∩ AD = S chính là giao tuyến của (PQR) và AD.
Đáp án D
Xét (PQR) và (ACD) có:
Q là điểm chung
PR // (ACD) ( do PR // AC)
⇒ giao tuyến của 2 mặt phẳng là đường thẳng d đi qua Q và song song PR
d cắt AD tại điểm S cần tìm
⇒ SQ // AC
Mà Q là trung điểm CD
⇒ S là trung điểm AD
Tham khảo:
a) Xét trên mp(BCD): NP cắt CD tại I
I thuộc NP suy ra I nằm trên mp(MNP)
Suy ra giao điểm của CD và mp(MNP) là I
b) Ta có I, M đều thuộc mp(ACD) suy ra IM nằm trên mp(ACD)
I, M đều thuộc mp(MNP) suy ra IM nằm trên mp(MNP)
Do đó, IM là giao tuyến của 2 mp(ACD) và mp(MNP) hay EM là giao tuyến của 2 mp(ACD) và mp(MNP).
a: \(I\in AD\subset\left(JAD\right)\)
\(I\in IB\subset\left(IBC\right)\)
Do đó: \(I\in\left(JAD\right)\cap\left(IBC\right)\left(1\right)\)
\(J\in BC\subset\left(IBC\right)\)
\(J\in JA\subset\left(JAD\right)\)
Do đó: \(J\in\left(IBC\right)\cap\left(JAD\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(JAD\right)\cap\left(IBC\right)=JI\)
b: Xét ΔABD có
M,I lần lượt là trung điểm của AB,AD
=>MI là đường trung bình của ΔABD
=>MI//BD
Xét (IMN) và (DBN) có
\(N\in\left(IMN\right)\cap\left(DBN\right)\)
IM//BD
Do đó: (IMN) giao (DBN)=xy, xy đi qua N và xy//IM//BD
c: Chọn mp(ABD) có chứa BD
\(I\in AD\subset\left(ABD\right)\)
\(I\in NI\subset\left(NIJ\right)\)
Do đó: \(I\in\left(ABD\right)\cap\left(INJ\right)\)(3)
Trong mp(ABC), gọi K là giao điểm của JN với AB
\(K\in AB\subset\left(ABD\right)\)
\(K\in JN\subset\left(INJ\right)\)
Do đó: \(K\in\left(ABD\right)\cap\left(NIJ\right)\)(4)
Từ (3) và (4) suy ra \(\left(ABD\right)\cap\left(NIJ\right)=IK\)
Gọi E là giao điểm của BD với IK
=>E là giao điểm của BD với mp(NIJ)
a) Nhận xét:
Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.
Gọi K = IJ ∩ CD.
Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);
Vậy (MIJ) ∩ (ACD) = MK
b) Với L = JN ∩ AB ta có:
Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)
Gọi P = JL ∩ AD, Q = PM ∩ AC
Ta có:
Nên Q là điểm chung thứ hai của (MNJ) và (ABC)
Vậy LQ = (ABC) ∩ (MNJ).
Đáp án D
Ta có: PR ∩ AC = I
Xét (PQR) và (ACD) có:
I là điểm chung
Q là điểm chung
⇒ Giao tuyến chủa (PQR) và (ACD) là QI