K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Chọn mặt phẳng phụ chứa CD là (BCD)

Do NP  không song song CD nên NP cắt CD tại E

Điểm  E ∈ N P    ⇒    E ∈ M N P .

Vậy C D ∩ M N P  tại E.

Chọn A

NV
7 tháng 1

Trong mp (ACD) kéo dài MN và CD cắt nhau tại I

Trong mp (BCD) nối IQ cắt BD tại J

Áp dụng định lý Menelaus trong tam giác ACD:

\(\dfrac{AM}{MC}.\dfrac{CI}{ID}.\dfrac{DN}{NA}=1\Rightarrow1.\dfrac{CI}{ID}.\dfrac{1}{2}=1\Rightarrow IC=2ID\)

Do \(BC=4BQ\Rightarrow QC+QB=4QB\Rightarrow QC=3QB\)

Menelaus cho tam giác BCD:

\(\dfrac{QC}{QB}.\dfrac{BJ}{JD}.\dfrac{DI}{IC}=1\Rightarrow3.\dfrac{BJ}{JD}.\dfrac{1}{2}=1\Rightarrow\dfrac{BJ}{JD}=\dfrac{2}{3}\)

Menelaus cho tam giác CQI:

\(\dfrac{ID}{DC}.\dfrac{CB}{BQ}.\dfrac{QJ}{JI}=1\Rightarrow1.4.\dfrac{JQ}{JI}=1\Rightarrow\dfrac{JQ}{JI}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{JB}{JD}+\dfrac{JQ}{JI}=\dfrac{2}{3}+\dfrac{1}{4}=\dfrac{11}{12}\)

NV
7 tháng 1

Điểm P là điểm nào em nhỉ?

1 tháng 2 2019

Ta có: 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1) 

suy ra MN // BC (1) (Định lý Ta-lét đảo).

- Lại có: MN ∩ (MNI) (2)

- Từ (1) và (2) suy ra: BC // (MNI)

Trong mp(BCD), gọi E là giao điểm của JK và CD

Ta có: \(IE\cap AD=\left\{F\right\}\)

\(IE\subset\left(IJK\right)\)

Do đó: \(AD\cap\left(IJK\right)=F\)

Xét ΔACD có I,F,E thẳng hàng

nên \(\dfrac{AI}{IC}\cdot\dfrac{CE}{ED}\cdot\dfrac{DF}{FA}=1\)

=>\(1\cdot2\cdot\dfrac{DF}{FA}=1\)

=>\(\dfrac{FD}{FA}=\dfrac{1}{2}\)

=>\(\dfrac{FA}{FD}=2\)

19 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

1 tháng 8 2018

Đáp án D

Ta chia khối đa diện thành các khối tứ diện

Thể tích khối tứ diện đều đã cho là  V o = 2 12

 

25 tháng 12 2020

Ta sẽ áp dụng Menelaus cho 2 tam giác BCD và ABC

À quên cái dạo đầu :v

Vì lười chụp hình nên đánh máy vậy

Tìm giao điểm giữa CD và (MNQ) trước

Gán CD vô (BCD) => giao tuyến giữa (BDC) và (MNQ) là QK (K là giao điểm của MN với BC)

=> QK cắt CD tại P => (MNQ) cắt CD tại P

Rồi giờ áp dụng Menelaus cho tam giác ABC trước

\(\dfrac{AM}{MB}.\dfrac{BK}{KC}.\dfrac{CN}{NA}=1\Leftrightarrow\dfrac{1}{2}.\dfrac{BK}{KC}.1=1\Rightarrow BK=2KC\)

Áp dụng Menelaus cho tam giác BCD

\(\dfrac{BK}{KC}.\dfrac{CP}{PD}.\dfrac{DQ}{QB}=1\Leftrightarrow2.\dfrac{CP}{PD}.1=1\Rightarrow CP=\dfrac{1}{2}PD\)

\(\Rightarrow\dfrac{CP}{CD}=\dfrac{1}{3}\)