K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

Ta có:  M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC
suy ra: MN// AC  và
  M N =    1 2 A C    (1)

Tương tự:  QP là đường trung  bình của tam giác ACD nên QP // AC và Q P =    1 2 A C  (2)

Từ  (1) và (2) suy ra: tứ giác  MNPQ là hình bình hành (có các cạnh đối song song và bằng nhau)

Đáp án C

5 tháng 4 2019

Đáp án A

10 tháng 12 2019

Các đường thẳng MN, NP, PQ, QM cùng nằm trong một mặt phẳng và BC, AD cùng song song với mặt phẳng (MNPQ). Suy ra ba vecto  M P → ,   B C → ,   A D → đồng phẳng

Đáp án B

15 tháng 1 2019

Phương án A sai vì : Ba đường thẳng AB, MN, CA cùng trong mặt phẳng (ABC) nên ba vecto  A B → ,   M N → ,   C A →  đồng phẳng

Phương án B sai vì: hai đường thẳng BC, AD cùng song song với mặt phẳng (MNPQ) có chứa đường thẳng MP nên ba vecto  M P → ,   B C → ,   A D →  đồng phẳng

Phương án C sai vì : Đường thẳng AD // (MNPQ) và mặt phẳng này chứa hai đường thẳng MP, PQ nên ba vecto  A D → ,   M P → ,   P Q →  đồng phẳng

Phương án D đúng vì : Đường thẳng BD cắt mặt phẳng (MNPQ) và nó chứa hai đường thẳng MP, PQ nên  M P → ,   P Q → ,   P D →  không đồng phẳng

Đáp án D

14 tháng 3 2017

Có thể loại các phương án A, B và D vì các cặp ba vecto ( M P → , M B → , v à   Q C → ) , ( M P → , M N → , P D → ) và ( M P → , M N →   v à   Q C → ) đều không đồng phẳng.

Phương án C đúng vì :  M P →   =   M A →   +   A P →   =   M A →   -   m P D →

Đáp án C

10 tháng 3 2018

Ta có giao tuyến của 2 mp (ABD) và (BCD)  là BD.

Lại có I ∈ M P ⊂ A B D I ∈ N Q ⊂ B C D ⇒ I thuộc giao tuyến của (ABD)  và (BCD).

=> I thuộc BD => 3 điểm I; B; D  thẳng hàng.

 Chọn B.

21 tháng 8 2023

tham khảo:

Bài tập 5 trang 56 Toán 11 tập 2 Chân trời

Gọi I là trung điểm của BD.

Tam giác BCD có IM là đường trung bình nên IM//DC và IM=\(\dfrac{1}{2}\)CD=\(\dfrac{1}{2}\).2a=1

Tam giác ABD có IN là đường trung bình nên IN//AB và IN=\(\dfrac{1}{2}\)AB=\(\dfrac{1}{2}\).2a=1

Ta có: cos\(\widehat{MIN}\)=\(\dfrac{a^2+a^2-\left(a\sqrt{3}\right)^2}{2.a.a}=\dfrac{-1}{2}\)

Nên \(\widehat{MIN}\)=\(120^0\)

Do AB//IN, CD//IM nên góc giữa AB và CD là góc giữa IM và IN là bằng \(120^0\)

17 tháng 4 2022

D. k=\(\dfrac{1}{2}\)

17 tháng 4 2022

D.k=\(\dfrac{1}{2}\)