Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua I kẻ đường thẳng song song với CD cắt AC tại H, ta có:
Suy ra HJ // AB
Như vậy mặt phẳng (IJH) song song với AB và CD.
Gọi (α) là mặt phẳng qua AB và song song với CD, ta có
Vậy IJ song song với mặt phẳng (α) cố định.
Trong mp (ACD), kéo dài IJ cắt CD tại E thì E là giao điểm của CD và (IJK)
Trong mặt phẳng (BCD); IJ cắt CD tại H nên H thuộc (ACD)
Điểm H thuộc IJ m suy ra bốn điểm M; I; J; H đồng phẳng.
Nên trong mặt phẳng (IJM) , MH cắt IJ tại H và M H ⊂ I J M .
Mặt khác M ∈ A C D H ∈ A C D ⇒ M H ⊂ A C D .
Vậy giao tuyến của 2 mặt phẳng (ACD) và ( IJM) là MH
Chọn D.
a) Gọi giao điểm của AM và BP là I, giao điểm của AN và DP là K.
Ta có IK đều thuộc mặt phẳng (AMN) và (BPD) suy ra IK là giao tuyến của hai mặt phẳng này.
Như vậy, d là đường thẳng đi qua I và K.
b) Ta có: \(mp\left( {AMN} \right) \cap mp\left( {BPD} \right) = IK\).
\(mp\left( {AMN} \right) \cap mp\left( {BCD} \right) = MN\) \(\;\).
\(mp\left( {BPD} \right) \cap mp\left( {BCD} \right) = BD\).
Mà MN // BD (do MN là đường trung bình của tam giác BCD) suy ra IK // BD.
Như vây, d song song với BD.
a)
⇒ (α) ∩ (ABC) = MN và MN // AB
Ta có N ∈ (BCD) và
Nên ⇒ (α) ∩ (BCD) = NP và NP // CD
Ta có P ∈ (ABD)
Và nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB
nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD
Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.
b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.
Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.
Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.
Vì MNPQ là hình bình hành nên ta có
EF // MN ⇒ EF // AB
Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J
⇒ I, O, J thẳng hàng
⇒ O ∈ IJ cố định.
Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .
Vậy tập hợp các điểm O là đoạn IJ.