K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

3 tháng 12 2021

26 tháng 10 2023

a: Gọi giao điểm của AG với BC là E

Xét ΔABD có

G là trọng tâm

E là giao điểm của AG với BD

Do đó: E là trung điểm của BD và AG=2/3AE

Xét ΔAHD có \(\dfrac{AG}{AE}=\dfrac{AM}{AD}=\dfrac{2}{3}\)

nên GM//ED

=>GM//BD

mà BD\(\subset\left(BCD\right)\) và GM không thuộc mp(BCD)

nên GM//(BCD)

b: Gọi giao của AH với BC là F

Xét ΔABC có

H là trọng tâm

F là giao điểm của AH với BC

Do đó: F là trung điểm của BC và AH=2/3AF

Xét ΔAGE có \(\dfrac{AH}{AF}=\dfrac{AG}{AE}=\dfrac{2}{3}\)

nên HG//FE

mà \(FE\subset\left(BCD\right)\);HG không thuộc(BCD)

nên HG//(BCD)

31 tháng 10 2023

Vẽ hình minh họa dc kh ạ

 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Tam giác BCE có E là trung điểm AD

Suy ra:\(\frac{{BG}}{{BE}} = \frac{{BI}}{{BC}} = \frac{2}{3}\)

Theo Ta lét, IG //CE

 Mà CE thuộc (ACD)

Suy ra: IG // (ACD)

16 tháng 12 2018

Đáp án D

Trong(ABC), ta có: BG cắt AC tại M

Trong (ABD), ta có: BG’ cắt AD tại N

⇒ (BGG’) ∩ (ACD) = MN

Thiết diện cần tìm là (BMN)

Xét tam giác BMN có:

MN = 1 2 CD = a 2 ( MN là đường trung bình của tam giác ACD)

BM = BN =  a 3 2 (BM, BN lần lượt là đường trung tuyến của tam giác ABC, ABD)

Áp dụng công thức heron:

S = p p - a p - b p - c = a 2 11 6

20 tháng 2 2019

Đáp án A

Xét tam giác HCD có:

⇒ EG // CD

15 tháng 6 2017

Giải bài 6 trang 92 sgk Hình học 11 | Để học tốt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.

Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C')  lần lượt là AG, A'G' suy ra AG // A'G'.

Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.

b) AGG'A' là hình bình hành suy ta AA' // GG'.

Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).

Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.