Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp
+) Gọi P là trung điểm của AB. Chứng minh tam giác MNP vuông tại P.
+) Áp dụng định lý Pytago trong tam giác vuông MNP tính MN.
Cách giải
Đáp án C
V C . B M N D V C . A B D = S B M N D S A B C = 3 4 ⇒ V C . B M N C = 3 4 V A B C D = 3 4 . 1 6 . B A . B C . B D = 3 2 a 3
Đáp án C
Gọi E,F,G lần lượt là trung điểm của các cạnh AB, BC, AC
Đáp án C
Gọi P là trung điểm của AC.
Ta có: P N / / C D , M P / / A B ⇒ A B ; C D = M P ; P N
P N = M P = a 2 , M N = a 3 2 ⇒ cos M P N ⏜ = − 1 2 ⇒ M P N ⏜ = 120 °
⇒ A B ; C D ⏜ = 60 °
Phương pháp:
Sử dụng công thức tính thể tích khối chóp có chiều cao h và diện tích đáy S là V = 1 3 h . S
Sử dụng công thức tỉ lệ thể tích: Cho hình chóp S.ABCD có M, N, P lần lượt thuộc các cạnh SA, SB, SC.
Cách giải: