K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Phương án A sai vì nếu CD ⊥ (ABD) thì CD ⊥ AD. Nhưng tam giác ACD cân tại A nên CD không thể vuông góc với AD

Phương án B sai vì tương tự như trên thì CD không thể vuông góc với AC

Phương án C đúng vì CD ⊥ AN (AN là đường trung tuyến của tam giác cân CAD tại A) và CD ⊥ MN ⇒ CD ⊥ (ABN)

Phương án D sai vì CD không vuông góc với MD do chứng minh trên.

Đáp án C

8 tháng 9 2017

Ta có CD ⊥ (ABN) (do BN ⊥ CD và AN ⊥ CD) ⇒ (BCD) ⊥ (ABN)

Đáp án C

8 tháng 4 2019

Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân

⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)

Đáp án B

4 tháng 5 2017

Ta có:  A B → . C D → = A B → A D → − A C → = A B → . A D → − A B → . A C →

= A B → . A D → . cos B A D − A B → . A C → cos B A C

= A B 2 . cos 60 ° − A B 2 cos 60 ° (do AB = AC = AD và B A C ^ = B A D ^ = 60 ° )

= 0

Suy ra A B ⊥ C D  hay góc giữa hai vecto A B → và C D → là 90 ° .

ĐÁP ÁN C

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM

Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.

12 tháng 4 2018

Tam giác ABD có AB = AD và  B A D ^ = 60 °

Nên tam giác ABD đều ⇒ D M ​ = A B 3 2  (DM là trung tuyến)

Tam giác ABC có AB = AC và  B A C ^ = 60 °

Nên tam giác ABC đều ⇒ C M ​ = A B 3 2  (CM là trung tuyến)

Do đó: DM = CM nên tam giác MCD cân tại M có MN là trung tuyến (do N là trung điểm của CD)

Suy ra MN là đường cao của tam giác MCD

⇒ M N ⊥ C D

Chứng minh tương tự:  ⇒ M N ⊥ C D

Vậy kết luận D là kết luận sai

Đáp án D

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

NV
23 tháng 4 2022

a.

Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao

\(\Rightarrow AM\perp BC\) (1)

Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)

b.

Từ A kẻ \(AE\perp DM\) (E thuộc DM)

Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)

\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)

Hệ thức lượng trong tam giác vuông ADM:

\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)

c.

Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)

\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)

\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)

NV
23 tháng 4 2022

undefined

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11