K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

a,+) Từ A vẽ AH _|_ (BCD) (theo giả thiết AB = AC = AD)

Nên \(\Delta ABH=\Delta ACH=\Delta ADH\)

=> HB = HC = HD

Vậy H là tâm đường tròn ngoại tiếp tam giác BCD

+) Ta có: \(AH=\sqrt{AB^2-BH^2}\) với \(BH=\dfrac{2}{3}BM=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{3}\)

\(\Rightarrow AH=\sqrt{a^2-\dfrac{3a^2}{9}}=\dfrac{a\sqrt{6}}{3}\)

b, Ta có: \(H=AH=\dfrac{a\sqrt{6}}{3};r=BH=\dfrac{a\sqrt{3}}{3}\)

Diện tích xung quanh hình trụ là:

\(S_{xq}=2\pi rh=2\pi.\dfrac{a\sqrt{3}}{3}.\dfrac{a\sqrt{6}}{3}=\dfrac{2\pi\pi^2\sqrt{2}}{3}\)

Thể tích khối trụ là:

\(V=\pi r^2h=\pi\left(\dfrac{a\sqrt{3}}{3}\right)^2.\dfrac{a\sqrt{6}}{3}=\dfrac{\pi a^3\sqrt{6}}{9}\)

25 tháng 6 2017

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Từ A vẽ AH ⊥ (BCD)

Xét ba tam giác ABH, ACH và ADH có:

AB= AC = AD ( vì ABCD là tứ diện đều).

AH chung

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

=> ∆ ABH = ∆ ACH =∆ ADH ( ch- cgv)

Suy ra,HB = HC = HD . Do đó, H là tâm đường tròn ngoại tiếp tam giác BCD

Do tam giác BCD là tam giác đều nên H đồng thời là trọng tâm tam giác BCD

Gọi M là trung điểm CD. Ta có;

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

+ xét tam giác AHB vuông tại H có:

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

20 tháng 6 2017

Chọn đáp án C

Ta có: MN là đường trung bình tam giác ACD.

=> CD // MN CD // (MNG)

Mặt khác: 

Khi đó: Giao tuyến = = Gx // CD

11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

18 tháng 12 2019

24 tháng 6 2017

 

8 tháng 5 2019

5 tháng 12 2017