Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KO có 3 điểm nào thẳng hàng => số đường thảng = số điềm là n số đường thẳng là K
=> \(K=\frac{n.\left(n-1\right)}{2}\) mà K = 28 => n.(n-1) = 56 => n =7 =>số điểm là 7
gọi số điểm cho trước là n ( n>1)
Theo bài ra ta có : n(n-1):2=28
n(n-1)=56
n(n-1)=7.8
vì n(n-1)là 2 stn liên tiếp , 56 viết dc tích 2 stn liên tiếp là: 8 và 9
vậy số điểm cần tìm là 9 "_" :)))))
Ta chia 12 điểm thành 2 tập hợp
Tập hợp A gồm 4 điểm thẳng hàng
Tập hợp B gồm 8 điểm phân biệt còn lại
Số đường thằng của tập hợp A là: 1 đường thẳng
Số đường thẳng của tập hợp B là:
8 x ( 8 - 1 ) : 2 = 28 ( đường thẳng )
Số đường thẳng đi qua 1 điểm thuộc tập hợp A, 1 điểm thuộc tập hợp B là:
4 x 8 = 32 ( đường thẳng )
⇒ Vẽ được tất cả số đường thẳng là:
1 + 28 + 32 = 61 ( đường thẳng )
Gọi số điểm là a
=> a x ( a - 1 ) : 2 = 105
a ( a - 1 ) = 105 x 2
a ( a - 1 ) = 210 = 14 x 15
=> a = 15
Vậy cho trước 15 điểm
Gọi số điểm là n (n \(\in\) N*)
Áp dụng công thức tính số đường thẳng qua n điểm trong đó không có 3 điểm nào thẳng hàng là: \(\frac{n.\left(n+1\right)}{2}\) (đường thẳng)
Ta có: \(\frac{n.\left(n+1\right)}{2}=45\)
=> n.(n + 1) = 45.2
=> n.(n + 1) = 90
=> n.(n + 1) = 9.10
=> n = 9
Vậy có 9 điểm
Cứ mỗi 1 cặp thì vẽ được 1 đường thẳng
=>9 điểm thì được 4 cặp và 1 điểm
vì đề bảo các cặp => 4x1=4(đường thẳng)