K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

7S = 7 + 72 + ..... + 731

7S - S = (7 - 7) + ...... + (730 - 730) + 731 - 1

6S = 731 - 1

6S + 1 = 7 31 - 1 + 1 = 731

N = 31 

16 tháng 11 2016

tink nhé bài này dễ quá đúng 100%

S=1+7+7^2+...+7^30

7S=7+7^2+...+7^30+7^31

7S-S=7^31-1

6S=7^31-1

=>6S+1=7^31   =>n=31

10 tháng 12 2018

Ta có ;

S = 1 + 7 + 7 + 7 + 7 + .... + 7 30  

=> 7S = 7 + 7 + 7 + 7 4 + 7 + .... + 7 31 

=> 7S - S = (   7 + 7 + 7 + 7 4 + 7 + .... + 7 31 ) - ( 1 + 7 + 7 + 7 + 7 + .... + 7 30  )

=> 6S = 7 31 - 1

=> 6S + 1 = 7​​​ 31 - 1 + 1 

=> 6S + 1 = 7 31

=> n = 31

30 tháng 11 2014

bài 1

a )      n+3 chia hết cho n -1 suy ra n-1+4 chia hết cho n-1 suy ra 4 chia hết cho n-1

suy ra n-1 thuộc Ư(4)

mà Ư(4)={1;2;4} nên n-1 thuộc {1;2;4} nên n thuộc {2;3;5}

b) 4n+3 chia hết cho 2n+1 nên 2.2n+1+2 chia hết cho 2n+1

suy ra 2 chia hết cho 2n+1 suy ra 2n+1 thuộc Ư(2)

mà Ư(2) = {1;2} nên 2n+1 thuộc {1;2}

nên 2n thuộc {0;1} nên n thuộc {0}

Bài 2 : 

a là chẵn

a chia hêt cho 5

chữ số tận cùng của a là 0

ko biết có đúng ko, nếu sai thì cho mình xin lỗi
 

13 tháng 12 2014

biết cũng ko giúp ok dễ ợt tự lực cánh sinh đi em gái

 

1 tháng 3 2017

cau 1 :1,6

câu 2 : sai đề bài

cau 3 chua lam duoc 

cau 4 : chua lam duoc

cau 5 :101/10

1 tháng 3 2017

1) 2n - 5 \(⋮\)n + 1

    2(n + 1) - 7 \(⋮\)n + 1

Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}

Với n + 1 = 1 \(\Rightarrow\)n = 0

     n + 1 = -1 \(\Rightarrow\)n = -2

     n + 1 = 7 \(\Rightarrow\)n = 6

     n + 1 = -7 \(\Rightarrow\)n = -8

Vậy n = { 0; -2; 6; -8}

15 tháng 10 2017

1. \(A=\left(2^{2017}\cdot3+2^{2017}\cdot5\right):2^{2018}\)

\(A=\left[2^{2017}.\left(3+5\right)\right]:\left(2^{2018}\right)\)

\(A=\left[2^{2017}.2^3\right]:\left(2^{2018}\right)\)

\(A=2^{2020}:2^{2018}=2^2=4\)

2. a) 2 + x : 5 = 6

=> x : 5 = 4

=> x = 20

b) 5x(7 + 48:x) = 45

=> x(7 + 48:x) = 9

=> 7x + 48 = 9

=> 7x = -39

=> x = -39/7.

c) Không hiểu đề câu này cho lắm.

3. \(25^{30}=\left(5^2\right)^{30}=5^{60};125^{19}=\left(5^3\right)^{19}=5^{57}\)

Vì 60 > 57 => \(25^{30}>125^{19}\)

4. \(S=1+7^1+...+7^{100}\)

\(\Rightarrow7S=7+7^2+...+7^{101}\)

\(\Rightarrow7S-S=7+7^2+...+7^{101}-1-7-...-7^{100}\)

\(\Rightarrow6S=7^{101}-1\)

\(\Rightarrow S=\frac{7^{101}-1}{6}\)

5. \(Q=1+2+2^2+...+2^{49}\)

\(\Rightarrow2Q=2+2^2+...+2^{50}\)

\(\Rightarrow2Q-Q=2+2^2+...+2^{50}-1-2-...-2^{49}\)

\(\Rightarrow Q=2^{50}-1\)

\(\Rightarrow2^{50}-1+1=2^n\)

\(\Rightarrow2^{50}=2^n\Rightarrow n=50\)

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài