K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2020

Xét \(y=8x^4+ax^2+b\Rightarrow y'=32x^3+2ax\)

\(y'=0\Rightarrow2x\left(16x^2+a\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\frac{a}{16}\end{matrix}\right.\)

- Nếu \(a>0\Rightarrow y'=0\) có đúng 1 nghiệm \(x=0\)

\(\Rightarrow f\left(x\right)_{max}=f\left(-1\right)=f\left(1\right)=\left|a+b+8\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=-7\\a+b=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=-7-a< 0\\b=-9-a< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a>0\\b< 0\end{matrix}\right.\)

Đáp án A đúng luôn, ko cần xét \(a< 0\) nữa

22 tháng 3 2016

\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)

    \(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)

     \(=7+\sin2-\sin1+\ln2\)

22 tháng 3 2016

b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)

         \(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)

         \(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)

NV
21 tháng 2 2021

Cứ áp dụng công thức \(\left(ln\left|u\right|\right)'=\dfrac{u'}{u}\) thôi

Còn câu dưới thì: \(\int\dfrac{axdx}{x^2\sqrt{x^2+a}}\)

Đặt \(u=\sqrt{x^2+a}\Rightarrow x^2=u^2-a\Rightarrow xdx=udu\)

\(\Rightarrow I=\int\dfrac{a.u}{u\left(u^2-a\right)}du\)

Nguyên hàm hữu tỉ khá cơ bản, tách ra bằng hệ số bất định

21 tháng 2 2021

CMR \(F\left(x\right)=ln\dfrac{x^2-x\sqrt{2} 1}{x^2 x\sqrt{2} 1}\) là 1 nguyên hàm của hàm số \(f\left(x\right)=\dfrac{2... - Hoc24

Hi câu này nữa anh :> 

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)Câu 2: Xét hàm...
Đọc tiếp

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?

\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)

\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)

Câu 2: Xét hàm số \(f\left(x\right)=-x^4+4x^2-3.\)Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trong khoảng \(\left(-\infty;\sqrt{2}\right).\)

B. Hàm số đồng biến trong khoảng \(\left(-\sqrt{2};+\infty\right).\)

C. Hàm số đồng biến trong từng khoảng \(\left(-\infty;-\sqrt{2}\right)\)và \(\left(0;\sqrt{2}\right).\)

D. Hàm số đồng biến trong từng khoảng \(\left(-\sqrt{2};0\right)\)và \(\left(\sqrt{2};+\infty\right)\)

1
22 tháng 6 2019

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\) 2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là 3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\) A.4 B.8 C.2 D.6 4 cho hai số phức...
Đọc tiếp

1 tập nghiệm bất phương trình e^2x+e^x-6<0 là

A (-3;2) B\(\left(-\infty;2\right)\) C\(\left(-\infty;ln2\right)\) D \(\left(ln2;+\infty\right)\)

2 Trong không gian, cho tam giác ABC vuông tại AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là

3 cho \(\int_1^3\) f(x)dx=4. Tính I = \(\int_1^0\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}dx\)

A.4 B.8 C.2 D.6

4 cho hai số phức \(z_1\) =2+i và \(z_2\) =-3+i . Phần ảo của số phức w= \(z_1z_2+2i\)

A.-1 B.3 C.1 D.7

5 gọi z1,z2 là hai nghiệm phức của pt \(z^2+4z+5=0\) trong đó z2 là nghiệm phức có phẩn ảo dương. Mô đun của số phúc w=\(z_1-2z_2\)

6 rong ko gian với hệ tọa độ oxyz. cho hai điểm A(0;1;1) ,B(1;3;2). Viết phương trình của mặt phẳng(P) đi qua A và vuông góc với đường thẳng AB

A :x+2y+z-9=0 B x+4y+3z-7=0 C x+2y+z-3=0 D y+z-2=0

7 Có 9 chiếc ghế dc kê thanh một hàng ngang. xếp ngẫu nhiên 9 học sinh trong đó có 3 hs nam và 6 hs nữ ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một hs,.Xác suất để các học sinh nam nào ngồi cạnh nhau là

8 Cho a>0,b>0 thỏa mãn \(a^2+9b^2=10ab\) .Khẳng định nào sau đây đúng

A log(a+1)+logb=1 B \(log\frac{a+3b}{4}=\frac{loga+logb}{2}\) C 3log(a+3b)=log a-log b D 2log(a+3b)=2log a+log b

9 trong ko gian oxyz điểm M (3;0;-2) nằm trên mp nào sau đây

A(oxy) B(oyz) C x=0 D(oxz)

3
NV
8 tháng 6 2020

8.

\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)

\(\Leftrightarrow\left(a+3b\right)^2=16ab\)

\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)

\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)

\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)

\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)

9.

Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz

NV
8 tháng 6 2020

5.

\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)

\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)

\(\Rightarrow w=z_1-2z_2=2-3i\)

\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)

6.

\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt

Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)

\(\Leftrightarrow x+2y+z-3=0\)

7.

Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?

Xếp bất kì: có \(9!\) cách

Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách

Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Khi \(x\neq 1\) thì hàm \(f(x)\) luôn là hàm sơ cấp xác định nên $f(x)$ liên tục tại mọi điểm \(x\neq 1\).

Do đó để hàm liên tục trên \(\mathbb{R}\Rightarrow \) chỉ cần xác định $a$ để hàm liên tục tại điểm $x=1$ là đủ.

Để $f(x)$ liên tục tại $x=1$ thì:

\(\lim_{x\to 1}f(x)=f(1)\)

\(\Leftrightarrow \lim_{x\to 1}\frac{x^3-4x^2+3}{x-1}=a+\frac{5}{2}\)

\(\Leftrightarrow \lim_{x\to 1}\frac{(x-1)(x^2-3x-3)}{x-1}=a+\frac{5}{2}\)

\(\Leftrightarrow \lim_{x\to 1}(x^2-3x-3)=a+\frac{5}{2}\)

\(\Leftrightarrow -5=a+\frac{5}{2}\Leftrightarrow a=\frac{-15}{2}\)

Đáp án B