K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

\(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)

=> \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(Đpcm)

28 tháng 9 2015

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 8 2018

ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)=k

\(\Rightarrow\)a=bk;c=dk

ta có:\(\frac{a.b}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{kb^2}{kd^2}\)=\(\frac{b^2}{d^2}\)

ta có:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{k^2.b^2+b^2}{k^2.d^2+d^2}\)=\(\frac{b^2(k+1)}{d^2(k+1)}\)=\(\frac{b^2}{d^2}\)

vậy:\(\frac{a^2+b^2}{c^2+d^2}\)\(=\)\(\frac{ab}{cd}\)

8 tháng 8 2016

a) Nhân cả hai vế với b, ta có đpcm

b) Đề sai

c) Nhân cả hai vế với b, ta có đpcm

d) Bạn trên đã làm r , mình  k trình bày lại nữa

8 tháng 8 2016

d,

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\)                           (1)

\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\)                            (2)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\)              (3)

Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

22 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

17 tháng 5 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

                           \(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

ADTCDTSBN

có: \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=\frac{a^2}{b^2}=\frac{c^2}{d^2}\right)\) ( đ p c m)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}\)

Ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{c+d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

21 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\Leftrightarrow\frac{bkb}{dkd}=\left(\frac{bk-b}{dk-d}\right)^2\)

Xét VT \(\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)

Xét VP \(\left(\frac{bk-b}{dk-d}\right)^2=\left(\frac{b\left(k-1\right)}{d\left(k-1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) -->Đpcm

21 tháng 8 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:
\(a=b.k\)

\(c=d.k\)

Theo bài ra ta có:
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\)   (1)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left[\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\)   (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

\(\Rightarrowđpcm\)

1 tháng 11 2016

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2012a}{2012c}=\frac{2013b}{2013d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{2012a}{2012c}=\frac{2013b}{2013d}=\frac{2012a+2013b}{2012c+2013d}=\frac{2012a-2013b}{2012c-2013d}\)

\(\Rightarrow\frac{2012a+2013b}{2012a-2013b}=\frac{2012c+2013d}{2012c-2013d}\)

Vậy...

1 tháng 11 2016

dễ vậy mà k nghỉ ra cam mơm