Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Theo TCDTSBN:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4c}{4d}=\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
k nhé!
TA CÓ A/B=C/D
=A/C=B/D=A-C/B-D=A+C/B+D
=>TỪ TỈ LỆ THỨC A+B/A-B=C+D/C-D TA CÓ THỂ CÓ TỈ LỆ THỨC LA
AA/B=C/D
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
Hì
Không spam như đừng cmt spam AD :
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Ta có: \(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a^2}{c^2}\)
\(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(3\right)\)
Từ (2),(3) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{7b}{7d}=\frac{3a-7b}{3c-7d}\left(2\right)\)
Từ (1) và (2) => \(\frac{2a+5b}{2c+5d}=\frac{3a-7b}{3c-7d}\Rightarrow\frac{2a+5b}{3a-7b}=\frac{2c+5d}{3c-7d}\)
Câu b tương tự
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(a,\Rightarrow\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left[k+1\right]}{b}=k+1\)
\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left[k+1\right]}{d}=k+1\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(b,\Rightarrow\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left[k+1\right]}{b\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left[k+1\right]}{d\left[k-1\right]}=\frac{k+1}{k-1}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{a+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)