Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)
b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)
\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)
\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow c-\left(-c\right)=0\Rightarrow c+c=0\Rightarrow c=0\left(đpcm\right)\)
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau vao A ,ta dc :
A = (2011a - 2010b + 2011b - 2010c + 2011c - 2010d + 2011d - 2010a) / (c + d + a + d + a + b + b + c)
A = (a + b + c + d) / (2a + 2b + 2c + 2d)
Ta có
a/2b = b/2c = c/2d = d/2a = (a + b + c + d) / (2a + 2b + 2c + 2d)
Vay : A = a/2b = b/2c = c/2d = d/2a