Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
+ Nếu \(a+b+c+d\ne0\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
+ Nếu \(a+b+c+d=0\)
\(\Rightarrow\) hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
<=> ad + a2 + bd + ab = bc + bd + c2 + cd
<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0
<=> ad + a2 + ab - bc - c2 - cd = 0
<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0
<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0
<=> ( a - c )( a + b + c + d ) = 0
<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)
TH1: \(a+b+c+d=0\Rightarrowđpcm\)
TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)
\(\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(đpcm\right)\)
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a
- Nếu a+b+c+d = 0 (điều phải chứng minh)
Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)
ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\Rightarrow\frac{\left(a+b\right)}{\left(d+c\right)}=\frac{\left(c+b\right)}{\left(d+a\right)}\)
\(\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}+1=\frac{\left(b+c\right)}{\left(d+a\right)}+1\)
Hay : \(\frac{\left(a+b+c+d\right)}{\left(c+d\right)}=\frac{\left(b+c+d+a\right)}{\left(d+a\right)}\)
- nếu a + b + c + d = 0 thì : c + d = d + a
\(\Rightarrow\)c = a
- Nếu a + b + c + d = 0 ( điều phải chứng minh )
Ta có : \(\frac{a+b}{c+d}\) = \(\frac{b+c}{d+a}\)
Cộng 1 vào mỗi tỉ só ta được \(\frac{a+b+c+d}{c+d}\) = \(\frac{a+b+c+d}{a+d}\)
- Nếu a+b+c+d khác 0 thì c+d = a+d nên a=c
- Nếu a+b+c+d = 0 thì bài toán được chứng minh ( xảy ra được a+b+c+d = 0 ; chẳng hạn a=1; b=2; c=3; d=-6)
nếu a+b+c+d khác 0 thì ta có
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
a+b=b+c
—>a=c