Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)
b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)
=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)
a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1
=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)
=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
a/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có :
\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)
\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
b/ Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)
\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)
b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)
Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
a, ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)
áp dụng tính chất dă y tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)
\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)
b, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)
áp dụng tính chất dă tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)
*a/b=c/d=k=>a=bk;c=dk
Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3
Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3
=>2a+3b/2a-3b=2c+3d/2c-3d
*a/b=c/d=>a/c=b/d=k
=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)
k^2=a/c.b/d=ab/cd (2)
Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2
*a/b=c/d=>a/c=b/d=k=a+b/c+d
=>k^2=(a+b/c+d)^2
k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2
=>(a+b/c+d)^2=a^2+b^2/c^2+d^2
Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)
a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)
Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)
Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)
=>10ac+bc=10b^2+cb
=>10ac=10b^2
=>ac=b^2
=>a/b=b/c=k
=>a=bk; b=ck
=>a=ck*k=k^2*c
\(\dfrac{a}{c}=\dfrac{k^2c}{c}=k^2\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+b^2}{c^2k^2+c^2}=\dfrac{b^2}{c^2}=\dfrac{c^2k^2}{c^2}=k^2\)
=>ĐPCM
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk\cdot b}=\dfrac{b^2\left(k^2-1\right)}{b^2k}=\dfrac{k^2-1}{k}\)
\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk\cdot d}=\dfrac{d^2\left(k^2-1\right)}{d^2\cdot k}=\dfrac{k^2-1}{k}\)
Do đó: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
b: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{b^2\cdot\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\)
\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left(k+1\right)^2}{k^2+1}\)
Do đó: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)
=>10ac+bc=10b^2+cb
=>10ac=10b^2
=>ac=b^2
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)
\(\Rightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Rightarrow ab^2+abc=abc+b^2c\)
\(\Rightarrow ab^2=b^2c\)
\(\Rightarrow a=c\)
Đến đây ko còn manh mối :v