Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )
theo t/c dãy tỉ số = nhau,ta có
a/b=c/d=a+c/b+d=a-c/b-d
-> đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét VT \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(1\right)\)
Xét VP \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\left(2\right)\)
Từ (1) và (2) ->Đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Do đó \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)(1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)(2)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
ta có :
a/b=c/d
=>a/c=b/d
áp dụng tính chất dãy tỉ số = nhau ta có:
a/c=b/d=a+b/c+d (1)
a/c=b/d=a-b/c-d (2)
từ 1 và 2 =>a+b/c+d=a-c/b-d (đpcm)
Có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1\)( 1 )
\(\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)( đpcm )
a-b/b=a/b-b/b=a/b-1=c/d-1(1)
c-d/d=c/d-d/d=c/d-1(2)
(1)(2)\(\Rightarrow\)đpcm