Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{c+d}{d+a}=\frac{a+b}{b+c}=k\)
\(\Rightarrow\hept{\begin{cases}c+d=\left(d+a\right)k\\a+b=\left(b+c\right)k\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c+d=dk+ak\\a+b=bk+ck\end{cases}}\)
\(\Rightarrow a+b+c+d=bk+ck+dk+ak\)
\(\Rightarrow a+b+c+d=\left(a+b+c+d\right)k\)
\(\Rightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}c+d=d+a\\a+b=b+c\end{cases}}\)
\(\Rightarrow c+d-d-a=0\)
\(\Rightarrow c-a=0\)
\(\Rightarrow c=a\)
ta có:a/b=c/d
=>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d=a+b/c+d=a-c/c-d
=>a+b/c+d=a-b/c-d
do đó: a+b/a-c=c+d/c-d
ta có;
a/b=c/d =>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d =>a+b/c+d=a-b/c-d
=>a+b/c+d=a-b/c-d => a+b/a-b=c+d/c-d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
Ta có:\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2), ta có: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
_Học tốt_
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Do đó ta có:
\(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) ta có tỉ lệ thức a-b/b = c-d/d
ta có: \(\frac{a}{b}=\frac{c}{d}\approx\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\approx\frac{a+b}{a-b}=\frac{c+d}{c-d}\approx\frac{a-b}{a+d}=\frac{c-d}{c+d}\)
Vậy.........................................
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\)a=bk , c=dk
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\)\(\frac{\left(b\left(k+1\right)\right)^2}{\left(d\left(k+1\right)\right)^2}=\frac{b^2\times\left(k+1\right)^2}{d^2\times\left(k+1\right)^2}=\frac{b^2}{d^2}\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2\times k^2+b^2}{d^2\times k^2+d^2}\)= \(\frac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\frac{b^2}{d^2}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)(dpcm)
* Giả sử tất cả các tỷ lệ thức đều có nghĩa.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{b}{d}\times\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}=\frac{a^2}{c^2}=\frac{2ab}{2cd}\)
\(=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(ĐPCM)
a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) =>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)\(=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\)(1)
CMTT ta có: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}\)\(=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\left(=\frac{a+b}{c+d}\right)\)=>\(\frac{a}{b}=\frac{c}{d}\)(ĐPCM)
Ta có : a+b/b+c = c+d/d+a
=> (a+b)/(c+d)= (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay: (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
- Nếu a+b+c+d khác 0 thì : c+d=d+a => c=a (1)
- Nếu a+b+c+d = 0 (2)
Từ (1) và (2)
\(\RightarrowĐPCM\)
Ta có : \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\Rightarrow\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\)\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
Hoặc \(\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu a + b + c + d khác 0 thì c + d = d + a => c = a ( hoặc a = c )
Nếu a + b + c + d = 0 ( đpcm )