Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng) và EC=EK(hai cạnh tương ứng)
Ta có: AC=AK(cmt)
nên A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EC=EK(cmt)
nên E nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
hay AE⊥CK(đpcm)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)
\(\Leftrightarrow\widehat{EBA}=90^0-60^0=30^0\)(3)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAB}=\widehat{EBA}\)
Xét ΔEBA có \(\widehat{EAB}=\widehat{EBA}\)(cmt)
nên ΔEBA cân tại E(Định lí đảo của tam giác cân)
Xét ΔEKA vuông tại K và ΔEKB vuông tại K có
EA=EB(ΔEBA cân tại E)
EK chung
DO đó: ΔEKA=ΔEKB(cạnh huyền-cạnh góc vuông)
Suy ra: KA=KB(hai cạnh tương ứng)
c) Ta có: ΔEKB vuông tại K(gt)
nên EB là cạnh lớn nhất(EB là cạnh huyền)
hay EB>EK
mà EK=EC(cmt)
nên EB>EC(đpcm)
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
=>EC=EK
=>E nằm trên đường trung trực của CK(1)
Ta có: ΔACE=ΔAKE
=>AC=AK
=>A nằm trên đường trung trực của CK(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
=>AE\(\perp\)CK
b: Ta có: ΔCAB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CBA}=90^0-60^0=30^0\)
Ta có: AE là phân giác của góc CAB
=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
Ta có: ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: Ta có: EB=EA
EA>AC(ΔAEC vuông tại C)
Do đó: EB>AC
d: Gọi giao điểm của BD và AC là H
Xét ΔHAB có
AD,BC là các đường cao
AD cắt BC tại E
Do đó: E là trực tâm của ΔHAB
=>HE\(\perp\)AB
mà EK\(\perp\)AB
và HE,EK có điểm chung là E
nên H,E,K thẳng hàng
=>AC,BD,KE đồng quy tại H
Bài 2:
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE; DA=DE
=>DB là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
mà DE<DC
nên AD<DC
d: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a) xét hai tam giác vuông AEK và tam giác AKC
có : AE chung góc KAE = góc CAE ( AE phân giác góc BAC)
=> tam giác vuông AEK = tam giác AKC
=> AK=AC ( hai cạnh tương ứng bằng nahu )
gọi CK giao với AE tại H
ta xét tam giác AHK và tam giác AHC có
góc KAE = góc CAE ( AE phân giác góc BAC)
AH chung
AK=AC
=> tam giác AHK = tam giác AHC
=> góc AHK = góc AHC mà góc AHK +góc AHC=180
=> góc AHK = góc AHC=90
=> AE_|_CK
b) xét tam giác vuông CHA có : A+H+C=180
=>góc HCA=180-90-30=60
mà góc ACK=60
=> tam giác ACK cân tại K
=> CK = KA
tương tự ta cs : CK=HB
=> KA=KB (=CK)
a. xét tam giác ACE và tam giác AKE có :
AE chung
góc C= góc K ( =90 độ)
A1=A2( gt)
=> tam giác ACE=tam giác AKE ( g.c.g)
=> AC=AK ( 2 cạnh tương ứng )
vì AC=AK => tam giác ACK cân tại a
trong 1 tam giác cân dq phân giác đồng thời là đường cao=> AE vuông góc với AK
b. vì AE là phân giác góc BAC
=> A1=A2=góc BAC:2=600 : 2= 300 (1)
Xét tam giác ABC có :
BAC+ABC+ACB=1800
600+900+ABC=1800
=> ABC=1800-900-600=300 (2)
Từ (1) và (2) => A1=ABC
xét tam giác ACE và tam giác BKE có :
ACE=BKE (=900)
A1=ABC( CMT)
EC=EK ( theo a)
=> tam giác ACE= tam giác BKE ( g.c.g)
=> AC=KB ( 2 cạnh tương ứng)
mà AC=AK ( theo a)
=> KB=KA (đpcm)
c. vì A2=ABC ( theo b cùng =300)
=> tam giác EAB cân tại E => AE=EB (1)
xét tam giác vuông ACE
vì AE là cạnh huyền => AE>AC(2)
từ (1) và (2 ) => EB>AC (đpcm)
d. gọi O là giao điểm của AC và BD
xét tam giác AOB có 3 dq cao lần lượt là AD,OK,BC
=> AD , OK ,BC giao nhau tại O => O,K,E thẳng hàng => AC,BD,KE đồng quy tại O ( đpcm )
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Xét ΔCAE và ΔKAE có
\(\widehat{ACE}=\widehat{AHE}=90\left(gt\right)\)
AE: cạnh chung
\(\widehat{CAE}=\widehat{HAE}\left(gt\right)\)
=> ΔCAE=ΔKAE (cạnh huyền-góc nhạn)
=> AC=AK
=> ΔACK cân tại A
Mà AE là tia phân giác của \(\widehat{CAK}\)
=> AE cũng là đường cao của ΔACK
=> AE vuông góc với CK
b) Có ΔCAK cân tại A(cmt)
Mà: \(\widehat{A}=60\left(gt\right)\)
=> ΔCAK là tam giác đều
=> AK=CK (1)
Vì ΔABC cân tại C(gt), có CK là đường cao ứng với cạnh huyền AB
=> CK=KB (2)
Từ (1)(2) suy ra: KA=KB