Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét 2 tam giác vuông ABMM và tam giác NBM có:
BM(chung)
ABM=NBM(gt)
=> tam giác ABM=NBM(CH-GN)
b)
theo câu a, ta có: tam giác ABM=NBM(CH-GN)
=>AB=BN=> tam giác ABN cân tại B có BM là tia phân giác
=> BM là đường cao, là đường trung tuyến của tam giác ABN
=> BM là đường trung trực của AN
c)
theo câu a, ta có tam giác ABM=NBM(CH-GN)
suy ra MA=MC
xét tam giác AIM=NCM có:
MA=MC(cmt)
IAM=MNC=90
AMI=NMC(2 góc đối đỉnh)
=> tam giác AIM=NCM(g.c.g)
=>MI=MC
d)
ta có tam giác MNC có N=90
=> MC là cạnh lớn nhất trong tam giác MNC
=>MC>MN
ta có: MA=MN
=>MA<MC
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
a) Tam giác ABO và tam giác AEO có:
Góc AOB = góc AOE (=90 độ)
Góc BAO = góc EAO (AO là phân giác góc BAE)
Cạnh AO chung
=> tam giác ABO = tam giác AEO (g-c-g) (1)
b) Từ (1) => AB = AE => tam giác BAE cân tại A (2)
c) Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE
=> AD là đường trung trực của BE
d) Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.
Gọi H là giao điểm của EM và AB => EH đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE
=> EM vuông góc AB
mà BC vuông góc AB (gt)
=> EM // BC
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
a) xét tam giac ABM và tam giác NBM ta có
BM =BM ( cạnh chung)
góc ABM = góc NBM ( BM là tia phân giác ABC)
-> tam giac ABM = tam giác NBM ( ch-gn)
b) ta có
BA=BN ( tam giác ABM=tam giác NBM)
MA=MN ( tam giac ABM= tam giác NBM)
-> BM la đường trung trực của AN
c) Xét tam giac AMI và tam giác NMC ta có
AM=BMN( tam giac ABM= tam giac NBM)
góc MAI= góc MNC (=90)
góc AMI= góc NMC ( 2 góc đối đỉnh)
-> tam giac AMI= tam giac NMC ( g-c-g)
-> MI= MC ( 2 cạnh tương ứng)
d) từ điểm M đến đường thẳng NC ta có
MN là đường vuông góc (MN vuông góc BC )
MC là đường xiên
-> MN < MC (quan hệ đường xiên đường vuông góc)
mà AM= MN ( tam giac ABM= tam giac NBM)
nên AM<MC
->