Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
Ta có:
\(sinB=\dfrac{AC}{BC}\)
\(cosC=\dfrac{AC}{BC}\)
\(\Rightarrow cosC=sinB\)
Lại có: \(cosB=\dfrac{AB}{BC}\)
\(\Rightarrow sin^2B+cos^2B=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)
Do đó:
\(\dfrac{sinB+5cosC}{sin^4B+cos^4B+2sin^2B.cos^2B}=\dfrac{sinB+5sinB}{\left(sin^2B+cos^2B\right)^2}=\dfrac{6sinB}{1^2}=6sinB\) (đpcm)
a) Xét tam giác AEH và tam giác AHB có:
\(\widehat{AEH}=\widehat{AHB}=90^o\)
Góc A chung
\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)
Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)
Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:
\(HB.HC=AH^2\)
Vậy nên ta có AE.AB = AF.AC = HB.HC
b) Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)
\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)
\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)
\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\)
c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :
\(AC^2=HC.BC\)
Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.
Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)
\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)
a, muộn rồi nên mk làm qua loa nha!
Dễ cm được AKHI là hình chữ nhật \(\Rightarrow AH=IK\)
Áp dụng hệ thức lượng cho \(\Delta ABC\) \(\Rightarrow IK^2=AH^2=BH.HC\)
b, \(Sin^2B=\left(\dfrac{AC}{BC}\right)^2\) \(=\dfrac{AC^2}{BC^2}\) (1)
theo hệ thức lượng: \(AC^2=HC.BC\)
Thay vào (1)\(\Rightarrow Sin^2B=\dfrac{HC.BC}{BC^2}=\dfrac{HC}{BC}\)
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
Tính AH: AH2 = BH * CH
=> AH = 12
Tính AB : AB2 = AH2 + BH2
=> AB = 15
sin C = \(\frac{AB}{BC}\)
AC2 = BC2 - AB2
=> AC= 20
Cos C = \(\frac{AC}{BC}\)
Tan B = \(\frac{AC}{AB}\)
Mình chỉ viết gợi ý thôi, k chi tiết lắm
ta có BC = BH + HC = 9 + 16 = 25
\(\Delta\)ABC vuông tại A có đường cao AH
AB^2 = BH.BC = 9.25 =225
=> AB = 15
AC^2 = HC.BC = 16.25 = 400
=> AC = 20
sin C = \(\frac{AB}{BC}\)= \(\frac{15}{25}\)=\(\frac{3}{5}\)
cos C =\(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
tan B = \(\frac{AC}{AB}\frac{20}{15}\frac{4}{3}\)
Lời giải:
Xét tam giác vuông $ABC$ ta có:
\(\sin B=\frac{AC}{BC}(1)\)
Lại có, vì tam giác $BAH$ vuông tại $H$ nên: \(\widehat{ABC}=90^0-\widehat{BAH}=\widehat{HAC}\)
\(\Rightarrow \sin B=\sin \widehat{ABC}=\sin \widehat{HAC}=\frac{HC}{AC}(2)\)
Từ \((1);(2)\Rightarrow \sin ^2B=\frac{AC}{BC}.\frac{HC}{AC}=\frac{HC}{BC}\) (đpcm)
b)
Lấy $M$ là trung điểm của $BC$
Vì $AM$ là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=MC\)
Do đó tam giác $AMC$ cân tại $M$
\(\Rightarrow \widehat{HMA}=\widehat{MAC}+\widehat{MCA}=2\widehat{MCA}=2\widehat{C}\)
\(\Rightarrow \sin 2C=\sin \widehat{HMA}=\frac{AH}{AM}=\frac{AH}{\frac{BC}{2}}=\frac{2AH}{BC}\)
Mặt khác:
\(2\sin C.\cos C=2.\frac{AH}{AC}.\frac{AC}{BC}=\frac{2AH}{BC}\)
Vậy \(\sin 2C=2\sin C\cos C\) (đpcm)