Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
Xét tam giác ABC vuông tại A, có đường cao AH.
Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
BD/BC=3/7
=>BD/CD=3/4
=>AB/AC=3/4
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=400
=>k=4
=>AB=12cm; AC=16cm
Ta có :
\(AB^2+AC^2=BC^2\) \(\left(Pitago\right)\)
mà \(AB=\dfrac{2}{3}AC\)
\(\Leftrightarrow\dfrac{4}{9}AC^2+AC^2=BC^2\)
\(\Leftrightarrow\dfrac{13}{9}AC^2=BC^2\)
\(\Leftrightarrow AC^2=\dfrac{9BC^2}{13}\)
\(\Leftrightarrow AC^2=\dfrac{9.12^2}{13}\)
\(\Leftrightarrow AC=\dfrac{3.12}{\sqrt[]{13}}=\dfrac{36\sqrt[]{13}}{13}\left(cm\right)\)
\(\Rightarrow AB=\dfrac{2}{3}.\dfrac{36\sqrt[]{13}}{13}=\dfrac{24\sqrt[]{13}}{13}\left(cm\right)\)
Kẻ \(AH\perp BC\) tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\)
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)
Vậy...