Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMN có
B là trung điểm của AM(AB=BM)
C là trung điểm của AN(AC=CN)
=> BC là đường trung bình của tam giác ABC
b) Xét tam giác AMJ có
B là trung điểm của AB(AB=BM)
I là trung điểm AJ(gt)
=> IB là đường trung bình của tam giác AMJ
=> IB//MJ(tính chất đường tb)
Ta có: IB//MJ(cmt)
Mà \(I\in BC\)(AI là đường trung truyến tam giác ABC)
=> BC//MJ
Ta có: MJ//BC(cmt)
MN//BC(cmt)
Theo tiên đề Ơ-clit ta suy ra:
M,J,N thẳng hàng
a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AB
Do đó: MI là đường trung bình
=>MI//AC
hay MI⊥AB
c: Xét tứ giác ACBD có
I là trung điểm của AB
I là trung điểm của CD
Do đó: ACBD là hình bình hành
a/ Áp dụng Pytago vào ΔABC, ∠A=90 độ
⇒AB²=BC²-AC²
⇒AB²= 13²-5²
⇒AB²=144
⇒AB=12 (cm)
Vậy diên tích tam giác ABC:
SΔABC=1212 ×AB×AC=1212 ×12×5=30 (cm²)
b/
b/ Ta có :
IB=IA(gt)
MB=MC (gt)
⇒IM là đường trung bình ΔABC
⇒IM // AC
Và ∠A =90 độ
⇒∠BIM = 90 độ ( đồng vị)
c)
Ta có:
IB=IA (gt)
IC=ID (gt)
⇒ Tứ giác ADBC là hình bình hành ( Theo tính chất hình bình hành)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔDBC có
Q là trung điểm của BD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔDBC
Suy ra: QP//BC và \(QP=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ
bài làm
xét tám giác ABC có M là trung điểm của AB ; N là trung điểm của AC
áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC
Xét tứ giác BMNC ; có MN//BC ( cmt )
=> BMNC là thang( dn ............)
mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân
có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12
b)
có NM//BC => MN//BE (1)
có MN=\(\frac{1}{2}\)BC mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC )
=> MN=BE (2)
từ (1) và (2)
=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)
c)
có tam giác ABC cân tại A => AB = AC
có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\) mà AB=AC(cmt)
=> AN=AM
xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)
d)
có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)
hay \(AF\perp BC\)
xét tứ giác ABFC có AF và BC là 2 đường chéo
mà \(AF\perp BC\)
=> ABFC là hình thoi (định nghĩa ......................)
e)
xét tứ giác AQCE
có AC và EQ là 2 đường chéo cắt tại N
mà N là trung điểm của AC ( đề bài )
N là trung điểm của EQ( tia đối )
=> AQCE là hình bình hành
mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )
=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)
~~~~~~~~~~~~~~~~my love~~~~~~~~
k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,
ai k và kb với mk thì mk sẽ k và kb
Toán lớp 8 ak