K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ E dựng đường thẳng d//AB, kéo dài BC về phía C cắt d tại K

Ta có

\(ABC=ACB\)(Do tg ABC cân tại A) (1)

\(ECK=ACB\)

 (góc so le treong) (3)

Từ (1) (2) (3) cân tại E => CE=KE mà DB=CE => KE=DB

Ta lại có KE//DB

=> BDKE là hình bình hành (tứ giác có cặp cạnh đối // và = nhau)

=> BK và DE là hai đường chéo của hình bình hành BDKE => BK đi qua trung điểm của DE => DF=FE

mà BC thuộc BK => BC đi qua trung điểm F của DE

12 tháng 7 2016

A B C D E F K

Từ D kẻ đt // với BC cắt AC tại K.

Ta có góc AKD=góc ACB

         góc ADK=góc ABC

        góc ACB= Góc ABC

=> góc ADK=góc AKD

=> tam giác ADK cân tại A=>AD=AK mà AB=AC

                                       =>BD=CK mặt khác BD=CE

                                       =>CK=CE

Xét tam giác DEK có C là tđ EK;CF//DK

=>F là tđ DE

23 tháng 1 2018

giup mk voi

30 tháng 9 2019

bạn ơi có sai đầu bài ko vậy

phải là trên tia đối của CA chứ

26 tháng 10 2018

Đây là một bài toán rất hay mà mình đã gặp nhiều lần hồi lớp 8 (thực chất là bài này hay xuất hiện trong chuyên toán 7).

Bài này bạn vẽ thêm để tạo ra tam giác bằng nhau có 2 chứa 2 cạnh FD và FE.

Cụ thể, có những cách vẽ thêm sau:

-Cách 1: Vẽ DK // AC (K thuộc BC) rồi chứng minh tam giác DKF và FCE bằng nhau.

Hoặc EK//AB (K thuộc BC) rồi chứng minh tam giác BDF và CDK bằng nhau.

(2 cách vẽ là như nhau) 

-Cách 2: Vẽ DK vuông góc BC, EH vuông góc BC. (K, H cùng thuộc BC).

Chứng minh tam giác DFK, EFH bằng nhau.

Mình không tiện nên chưa giải cụ thể được, bạn tự giải tiếp để có thêm kinh nghiệm nhé.

Khi nào bạn giải xong thì có thể tham khảo câu nâng cao: Chứng minh đường trung trực của DE luôn đi qua 1 điểm cố định.

Chúc bạn học tốt!

Chuyên toán 9.

25 tháng 7 2016

Mình vẽ được hình và giải được câu a rôì ok

 

24 tháng 2 2017

Câu a bạn làm được thì mình khỏi làm lại nhé! Còn đây là câu b và c.

Xét \(\Delta\)NBD và \(\Delta\)ECM có: BD=CE(gt), NB=CM(gt),ND=ME (c/m a)

=> \(\Delta\)=\(\Delta\) (ccc) => \(\widehat{DNB}=\widehat{CME}\)\(\widehat{CME}=\widehat{DMB}\) (đối đỉnh)

=> \(\widehat{DNB}=\widehat{DMB}\). Xét tam giác NDM có: \(\widehat{DNB}=\widehat{DMB}\) => \(\Delta\)NDM cân tại D => DN=DM mà DN=ME (c/m a) => DM=ME (1)

Ta có B.M,C thẳng hàng =>\(\widehat{BMD}+\widehat{DMC}=180^o\)

Mặt khác \(\widehat{BMD}=\widehat{CME}\) ( cùng = \(\widehat{BND}\))

=>\(\widehat{CME} +\widehat{DMC}=180^o\) => D,M,E thẳng hàng (2)

Từ (1) và (2) => M trung điểm DE.