Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do O thuộc đường trung trực của MC
\(\Rightarrow MO=OC\) (1)
Do O thuộc đường trung trực của BC
\(\Rightarrow OC=OB\) 2)
Từ (1) và (2) \(\Rightarrow OM=OB\)
Lại có: \(AM=AB\)
\(\Rightarrow AO\) là đường trung trực của BM
Xét tam giác AID và tam giác BIM có :
AD = BM (gt)
AI = BI (GT)
\(\widehat{A}=\widehat{B}\) (Ax song song với BM; ở vị trí so le trong)
Do đó : tam giác AID = tam giác BIM (c-g-c)
B)
Xét 2 tam giác AIM và BID có :
AI = BI (gt)
DI = IM ( tam giác AID = tam giác BIM)
\(\widehat{BID}=\widehat{AIM}\)(Đ đ)
Do đó : \(\Delta AIM=\Delta BID\left(c-g-c\right)\)
c)
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC