Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(B=\frac{10n}{5n-3}\inℤ\Leftrightarrow10n⋮5n-3\)
\(\Rightarrow10n-6+6⋮5n-3\)
\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)
\(2\left(5n-3\right)⋮5n-3\)
\(\Rightarrow6⋮5n-3\)
r` đến đây tự làm tiếp đc
b, \(B=\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=\frac{2\left(5n-3\right)}{5n-3}+\frac{6}{5n-3}=2+\frac{6}{5n-3}\)
để B lớn nhất thì \(\frac{6}{5n-3}\) lớn nhất
\(\Rightarrow5n-3\) là số nguyên dương nhỏ nhất
+ xét 5n-3=1
=> 5n = 4
=> n = 4/5 (loại)
+ xét 5n-3=2
=> 5n = 5
=> n=1 (tm)
vậy n = 1 và \(B_{max}=2+\frac{6}{2}=5\)
\(\text{a) Để B có giá trị nguyên thì}\)
\(10n⋮\left(5n-3\right)\)
\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)
\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)
\(\Rightarrow6⋮\left(5n-3\right)\)
\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)
\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)
\(\Rightarrow n=0\text{hoặc}n=1\)
\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)
\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)
\(\Rightarrow5n-3=2\Rightarrow n=1\)
\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)
Baif: A=\(\frac{10n}{5n-3}=2+\frac{6}{5n-3}\)
để A nguyên thì 5n-3 = Ư(6)={-1;-2;-3;-6;1;2;3;6}
xét từng TH:
- 5n-3=-1=>n=2/5
- 5n-3=-2=>n=1/5
- 5n-3=-3=>n=0
- 5n-3=-6=>n=-3/5
- 5n-3=1=>n=4/5
- 5n-3=2=>n=1
- 5n-3=3=>n=6/5
- 5n-3=6=>n=9/5
b) A= \(\frac{10n}{5n-3}=2+\frac{6}{5n-3}\)
để A lớn nhất thì 5n-3 nhỏ nhất
điều kiện xác định 5n-3 \(\ne\) 0=>n \(\ne\) 3/5
\(\frac{10n}{5n-3}\)=\(\frac{10n-6}{5n-3}\)+\(\frac{6}{5n-3}\)=\(\frac{2\left(5n-3\right)}{5n-3}\)+\(\frac{6}{5x-3}\)
Để Bnhận giá trị nguyên thì
\(6⋮\)\(5n-3\Rightarrow5n-3\inƯ_{\left(6\right)}\)={-1,1-2,2-3,3-6,6}
\(\Rightarrow n\in\){\(\frac{2}{5};\frac{4}{5};\frac{1}{5};1;0;\frac{6}{5};\frac{9}{5};\frac{3}{5}\)}
mà n \(\ne\) \(\frac{3}{5}\)=>\(\Rightarrow n\in\) { \(\frac{2}{5};\frac{4}{5};\frac{1}{5};1;0;\frac{6}{5};\frac{9}{5}\) }