Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
Mk nghĩ là x3,y3,z3.
Áp dụng BĐT AM-GM:
\(\Sigma_{cyc}\left(\frac{x^2}{\sqrt{x^3+8}}\right)=\Sigma_{cyc}\left(\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\right)\)\(\ge2\Sigma_{cyc}\left(\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BĐT Cauchy-Schwart:
\(2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)\(=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(x+y+z\right)+18}\)\(\ge\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-2\left(x+y+z\right)-\left(x+y+z\right)+18}\)
gt\(\Leftrightarrow3\left(x+y+z\right)\le3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z\le0\\x+y+z\ge3\end{matrix}\right.\)
Đặt t=x+y+z\(\left(t\ge3\right)\)
Cần c/m:\(\frac{2t^2}{t^2-3t+18}\ge1\)
Có :\(t^2-3t+18>0\)
\(\Rightarrow2t^2\ge t^2-3t+18\)
\(\Leftrightarrow t^2+3t-18\ge3^2+3.3-18=0\)(Đúng)
Vậy min =1
Dấu = xra khi x=y=z=1.
#Walker
Kiểm tra giùm em đúng ko ạ Akai Haruma
Áp dụng BĐT bunyakovsky:
\(\sum\dfrac{x^2}{y+z}\ge\sum\dfrac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{matrix}\right.\) thì có a+b+c=2016 và cần tìm Min của \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}\) (\(x^2=\dfrac{a^2+c^2-b^2}{2}\))
Ta có: \(\sum\dfrac{a^2+c^2-b^2}{2\sqrt{2}b}=\dfrac{1}{2\sqrt{2}}.\left(\sum_{sym}\dfrac{a^2}{b}-\sum b\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\sum_{sym}\dfrac{a^2}{b}=\dfrac{a^2}{b}+\dfrac{c^2}{b}+\dfrac{b^2}{a}+\dfrac{c^2}{a}+\dfrac{a^2}{c}+\dfrac{b^2}{c}\ge\dfrac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}=2\left(a+b+c\right)\)
DO đó \(VT\ge\dfrac{1}{2\sqrt{2}}\left(2\sum a-\sum a\right)=\dfrac{1}{2\sqrt{2}}\left(a+b+c\right)=\dfrac{2016}{2\sqrt{2}}=\dfrac{1008}{\sqrt{2}}\)
Dấu = xảy ra khi a=b=c hay \(x=y=z=\dfrac{672}{\sqrt{2}}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{y+z}}{x}\geq \frac{(y+z)(x+\sqrt{yz})}{x}=y+z+\frac{\sqrt{yz}(y+z)}{x}\)
Hoàn toàn tương tự :
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+z}}{y}\geq x+z+\frac{\sqrt{xz}(x+z)}{y}\)
\(\sqrt{(x+y)(y+z)(x+z)}.\frac{\sqrt{x+y}}{z}\geq x+y+\frac{\sqrt{xy}(x+y)}{z}\)
Cộng theo vế:
\(T\geq 2(x+y+z)+\underbrace{\frac{(x+y)\sqrt{xy}}{z}+\frac{(y+z)\sqrt{yz}}{x}+\frac{(z+x)\sqrt{zx}}{y}}_{M}\)
Ta có:
\(M=\frac{(\sqrt{2}-z)\sqrt{xy}}{z}+\frac{(\sqrt{2}-x)\sqrt{yz}}{x}+\frac{(\sqrt{2}-y)\sqrt{xz}}{y}\)
\(=\sqrt{2}\left(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\right)-(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)
Áp dụng BĐT AM-GM:
\(\frac{\sqrt{xy}}{z}+\frac{\sqrt{yz}}{x}+\frac{\sqrt{xz}}{y}\geq 3\sqrt[3]{\frac{xyz}{xyz}}=3\)
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\leq \frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=\sqrt{2}\)
Do đó: \(M\geq 3\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Rightarrow T\geq 2(x+y+z)+M\geq 2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)
Vậy \(T_{\min}=4\sqrt{2}\)
2/ \(\left[{}\begin{matrix}x< -12\\x>12\end{matrix}\right.\)
- Với \(x< -12\Rightarrow x+\frac{12x}{\sqrt{x^2-144}}=x\left(1+\frac{12}{\sqrt{x^2-144}}\right)< 0< 35\)
\(\Rightarrow\) BPT luôn đúng
- Với \(x>12\), hai vế không âm, bình phương hai vế ta được:
\(x^2+\frac{144x^2}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\frac{x^4}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\left(\frac{x^2}{\sqrt{x^2-144}}+49\right)\left(\frac{x^2}{\sqrt{x^2-144}}-25\right)\le0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-144}}-25\le0\)
\(\Leftrightarrow x^2\le25\sqrt{x^2-144}\)
\(\Leftrightarrow x^4-625x^2+90000\le0\)
\(\Leftrightarrow\left(x^2-400\right)\left(x^2-225\right)\le0\)
\(\Leftrightarrow225\le x^2\le400\)
\(\Leftrightarrow15\le x\le20\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x< -12\\15\le x\le20\end{matrix}\right.\)