Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tan x=2
=>\(\dfrac{sinx}{cosx}=2\)
=>\(sinx=2\cdot cosx\)
\(B=\dfrac{cos^3x+cosx\cdot sin^2x-sin^3x}{sin^3x-cos^3x}\)
\(=\dfrac{cos^3x+cosx\cdot4cos^2x-8cos^3x}{8cos^3x-cos^3x}\)
\(=\dfrac{-3cos^3x}{7cos^3x}=-\dfrac{3}{7}\)
ta có : \(sin^2x+cos^2x=1\Leftrightarrow\left(sinx+cosx\right)^2-2sinx.cosx=1\)
\(\Leftrightarrow\left(sinx+cosx\right)^2-0,96=1\) \(\Leftrightarrow sinx+cosx=\pm\sqrt{1,96}=\pm1,4\)
ta có : \(sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
th1: \(sinx+cosx=1,4\Rightarrow sin^3x+cos^3x=0,728\)
th2: \(sinx+cosx=-1,4\Rightarrow sin^3x+cos^3x=-0,728\)
vậy ............................................................................................................
a/ Tớ làm bên dưới rồi
b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)
c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)
\(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)
d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)
\(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)
\(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)
\(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)
\(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)