Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{cos^2\alpha}=1+tan^2\alpha=1+\left(\dfrac{7}{24}\right)^2=\dfrac{625}{576}\)
\(\Rightarrow cos^2\alpha=\dfrac{576}{625}\)
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{24}{7}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{576}{625}\Rightarrow cos\alpha=\dfrac{24}{25}\)
\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow sin^2\alpha=\dfrac{49}{625}\Rightarrow cos\alpha=\dfrac{7}{25}\)
1+cot a=1+cos a/sin a =(sin a+cos a)/sin a =>sin2 a/(1+cot a)=sin3 a/(sin a+cos a)
1+tan a= 1+ sin a/cos a = (cos a+sin a)/cos a => cos2 a/(1+tan a)=cos3 a(sin a+cos a)
biểu thức là sin a.cos a +(sin3 a+cos3 a)(sin a+cos a)=sina.cosa + sin2a-sina.cosa+cos2a= sin2a+cos2a
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)
\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)
\(\frac{sin^2\alpha}{cos\alpha.\left(1+\frac{sin\alpha}{cos\alpha}\right)}-\frac{cos^2\alpha}{sin\alpha.\left(1+\frac{cos\alpha}{sin\alpha}\right)}=\frac{sin^2\alpha}{cos\alpha+sin\alpha}-\frac{cos^2\alpha}{sin\alpha+cos\alpha}=\frac{\left(sin\alpha+cos\alpha\right).\left(sin\alpha-cos\alpha\right)}{sin\alpha+cos\alpha}=sin\alpha-cos\alpha\)