K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

đt simson

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a: góc OAD+góc OMD=180 độ

=>OADM nội tiếp

b: ΔOBC cân tại O

mà ON là đường cao

nên ONlà trung trực của BC

=>sđ cung NB=sd cung NC

=>góc BAN=góc CAN

=>AN là phân giác của góc BAC

góc DAI=1/2*sđ cung AN

góc DIA=1/2(sđ cung AB+sđ cung NC)

=1/2(sđ cung AB+sđ cung NB)

=1/2*sđ cung AN

=>góc DAI=góc DIA

=>ΔDAI cân tại D

23 tháng 5 2016

c) *MOHD nội tiếp (cmb) \(\Rightarrow\)^DHB = ^DOM Mà ^DHM +^BHD=180 và ^DOM +^EOD =180 => ^EOD = ^BHD  

  Mặt khác, ^EOD =^BQD (OM // BQ) => ^BHD = ^BQD => BHQD nội tiếp.

=>đpcm

                                                         

23 tháng 5 2016

d) Kéo dài BQ cắt AC tại J

Cm Q là trung điểm BJ (đường trung bình)

Cm \(\frac{EO}{BQ}\)\(=\)\(\frac{OF}{QJ}\)(\(=\)\(\frac{AO}{AQ}\)\(\Rightarrow\)Đpcm

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại Ha/ CM tứ giác CHEF nội tiếpb/ CM tam giác ABF cânc/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CEBài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường...
Đọc tiếp

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại H

a/ CM tứ giác CHEF nội tiếp

b/ CM tam giác ABF cân

c/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CE

Bài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường thẳng OA cắt (O), (O') lần lượt tại hai điểm C, D. Đường thẳng O'A cắt (O), (O') lần lượt tại hai điểm E, F 
a/ CM 3 đường thẳng AB, CE và DF đồng quy tại I 
b/ tứ giác BEFI nội tiếp
c/ Cho PQ là tiếp tuyến chung của (O), (O') ( P thuộc (O) và Q thuộc (O')) CM đường thẳng AB đi qua trung điểm của đoạn thẳng PQ

ThíchHiển thị thêm cảm xúc

Bình luậnChia sẻ

0