Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCKA vuông tại K và ΔCAM vuông tại A có
góc KCA chung
=>ΔCKA đồng dạng với ΔCAM
b: Xét ΔAKM vuông tại K và ΔABD vuông tại B có
góc KAM chung
=>ΔAKM đồng dạng với ΔABD
=>AK/AB=AM/AD
=>AK*AD=AB*AM
a: Xét ΔCKA vuông tại K và ΔCAM vuông tại A có
góc C chung
=>ΔCKA đồng dạng với ΔCAM
b: Xét ΔAMK vuông tại K và ΔADB vuông tại B có
góc MAk chung
=>ΔAMK đồng dạng với ΔADB
=>AM/AD=AK/AB
=>AM*AB=AD*AK
a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có
\(\widehat{BAH}\) chung
Do đó: ΔABC\(\sim\)ΔAHB(g-g)
b) Xét ΔCED vuông tại D và ΔBEH vuông tại H có
\(\widehat{CED}=\widehat{BEH}\)(hai góc đối đỉnh)
Do đó: ΔCED\(\sim\)ΔBEH(g-g)
Suy ra: \(\dfrac{CE}{BE}=\dfrac{CD}{BH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot CE=CD\cdot BE\)(Đpcm)
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))