K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

Áp dụng HTL: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{9}+\dfrac{1}{16}=\dfrac{25}{144}\)

\(\Rightarrow AH^2=\dfrac{144}{25}\Rightarrow AH=\dfrac{12}{5}\)

Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=3,2\left(cm\right)\)

Vậy \(\dfrac{S_{ABC}}{S_{HAC}}=\dfrac{AB\cdot AC}{AH\cdot HC}=\dfrac{12}{3,2\cdot2,4}=\dfrac{25}{16}\)

10 tháng 10 2021

A,B nằm trên đường tròn

M,C nằm ngoài đường tròn

1 tháng 10 2023

Theo định lý sin ta có:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)

Mà: ΔAEC vuông tại E ta có:

\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)

ΔABD vuông tại D nên ta có:

\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)

Theo định lý sin ta có:

\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)

\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)

1 tháng 10 2023

hình ạ

19 tháng 2 2022

Ta có \(\dfrac{S_{AMB}}{S_{AMC}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{16}{36}=\dfrac{4}{9}\)

Kẻ HN//CM

Xét ΔAMC có HN//CM

nên AH/AM=AN/AC=1/3=HN/CM

=>AH=1/3AM=1/3*2/3*AB=2/9*AB

AH=2/9AB

=>BH/AB=7/9

mà BM/AB=1/3

nên BM/BH=1/3:7/9=1/3*9/7=3/7

Xét ΔBHN có MK//HN

nên MK/HN=BM/BH=3/7

=>MK=3/7HN=3/7*1/3*CM=1/7*CM

=>CK/CM=6/7

S AMC=2/3*S ABC

=>S AKC=6/7*2/3*S ABC=4/7*S ABC

14 tháng 9 2023

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2