K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AH^2=AC^2-HC^2=20^2-16^2=144\)

hay AH=12(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm; AH=12cm

30 tháng 10 2019

8 tháng 8 2019

mọi người giúp mình với

8 tháng 8 2019

vì BH=9 , HC=16

=> BC=25

xét tam giác ABC ...., ta có

BC^2=CA^2+AB^2

hay 25^2=20^2 +Ab^2

625=400 + AB^2

AB^2=225

AB=15

xét tam giác ABH...., ta có

AB^2=AH^2 + BH^2

hay 15^2= Ah^2 + 9^2

225= AH^2 +81

AH^2= 144

AH=12

thêm kl và những chỗ còn thiếu vào nhé

8 tháng 8 2019

Ta có: \(BC=BH+CH=9+16=25\)

Áp dụng định lý Py-  ta - go vào \(\Delta ABC\), ta được:

   \(AB^2=BC^2-AC^2\)

\(\Leftrightarrow AB^2=25^2-20^2\)

\(\Leftrightarrow AB^2=625-400\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=\sqrt{225}=15\)

Áp dụng định lý Py-  ta - go vào \(\Delta AHC\), ta được:

   \(AH^2=AC^2-CH^2\)

\(\Leftrightarrow AH^2=20^2-16^2\)

\(\Leftrightarrow AH^2=400-256\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}=12\)

Bài làm

BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)

Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2BC2=AB2+AC2

⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202

=625−400=225=152=625−400=225=152

Vậy AB=15cm

Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122

Vậy AH= 12cm

# Học tốt #

20 tháng 1 2022

a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)

b, Ta có : BH + CH = BC = 25 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=15cm\)

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=12cm\)

8 tháng 2 2020

ABCH20cm16cm5cm

Áp dụng định lí Pythagoras vào △ABH, ta có :

        AB2 = AH2 + BH2

\(\Rightarrow\)202 = AH2 + 162

\(\Rightarrow\)AH2= 144

\(\Rightarrow\)AH  = 12

Áp dụng định lí Pythagoras vào △AHC, ta có :

         AC2 = AH2 + HC2

\(\Rightarrow\)AC2 = 122 + 52

\(\Rightarrow\)AC2 = 169

\(\Rightarrow\)AC   = 13

Vậy AH = 12 cm

       AC = 13 cm

10 tháng 7 2021

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

4 tháng 3 2019

11 tháng 2 2018

Ap dụng định lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

14 tháng 2 2018

Ta có hình vẽ:  A H B C

 Áp dụng định lý Pitago. Ta có:

BC2 = AB2 + AC2 <=> 62 + 82 = 100 cm2

100 = 10 x 10

=> BC = 10 cm

 Áp dụng công thức Heron để tính chiều cao. Ta có:

  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  (p là chu vi, S là diện tích, a,b,c là độ dài 3 cạnh)

  Ta có: Chu vi tam giác là: 6 + 8 + 10 =24 cm

Vậy \(S=\sqrt{24\left(24-6\right)\left(24-8\right)\left(24-10\right)}=48\sqrt{42}\)

   Để tính chiều cao AH, ta lấy 2 lần diện tích chia cho đáy ( BC) sẽ có được chiều cao

2 lần diện tích là: \(48\sqrt{42}.2=96\sqrt{42}\)

\(\Rightarrow AH=96\sqrt{42}:10=\frac{24\sqrt{42}}{25}\)

 Độ dài cạnh BH là:  (Bạn tự làm)

Độ dài cạnh HC là: (Bạn tự làm nhé)

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)