Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lí Piatago trong \(\Delta ABC\) vuông tại \(A\) có:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=5^2+12^2\)
\(\Rightarrow BC=\sqrt{169}\)
\(\Rightarrow BC=13cm\)
Ta có: \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên:
\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5cm\)
b, Xét tứ giác \(ABCD\) có:
\(M\) là trung điểm của \(AD\)
\(M\) là trung điểm của \(BC\)
\(\Rightarrow ABCD\) là HBH
\(\Rightarrow AD=BC\)
c, Giả sử \(AB=AC\)
\(\Rightarrow\Delta ABC\)vuông cân ( Từ đầu \(\Delta ABC\) vuông rồi)
Xét HBH \(ABCD\) có:
\(\widehat{A}=90^0\)
\(\Rightarrow ABCD\) là HCN
Xét hình chữ nhật \(ABCD\) có:
\(AB=AC\left(gt\right)\)
\(\Rightarrow ABCD\) là hình vuông.
Để \(ABCD\) là hình vuông thì \(\Delta ABC\) vuông tại \(A\) cần thêm điều kiện \(AB=AC\)
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(BC^2=AB^2+AC^2\)( định lý Py - ta - go )
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(\Rightarrow BC=13cm\)( vì BC > 0 )
+ Vì AM là đường trung tuyến ứng với cạnh huyền BC trong tam giác vuông ABC ( gt)
\(\Rightarrow AM=\frac{1}{2}BC\)( tính chất tam giác vuông cân )
\(\Rightarrow AM=\frac{1}{2}.13\)
\(\Rightarrow AM=6,5\left(cm\right)\)
b ) Vì AM là đường trung tuyến của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow M\)là trung điểm của BC (1)
+ Vì D đối xứng với A qua M (gt)
\(\Rightarrow M\)là trung điểm của AD (2)
Từ (1) và (2) \(\Rightarrow\) 2 dường chéo BC và AD cắt nahu tại trung điểm M của mỗi đường
\(\Rightarrow\)Tứ giác \(ABCD\) là hình bình hành ( dấu hiệu nhận biết hình bình hành )
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
\(\Rightarrow\)Hình bình hành ABCD là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )
\(\Rightarrow AD=BC\)( tính chất hình chữ nhật )
c ) Theo câu b ta có \(ABCD\)là hình chữ nhật
Để hình chữ nhật \(ABCD\) là hình vuông
\(\Leftrightarrow AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\)vuông tại A (gt)
\(\Rightarrow\Delta ABC\)vuông cân tại A .
Vậy \(\Delta ABC\)vuông cân tại A thì hình chữ hật ABCD là hình vuông
Chức bạn học tốt !!!
a) \(BC^2=AC^2+AB^2=5^2+12^2=169=13^2\)
=> \(BC=13\)
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông thì
\(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)
b) ABDC là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường. Hơn nữa góc A vuông nên ABDC là hình chữ nhật. Suy ra hai đường chéo bằng nhau, AD = BC
c) Để ABDC là hình vuông thì AB = AC => Tam giác ABC là vuông cân.
a) BC^2=AC^2+AB^2=5^2+12^2=169=13^2
=> BC=13
Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông thì
AM=12 BC=132 =6,5
b) ABDC là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường. Hơn nữa góc A vuông nên ABDC là hình chữ nhật. Suy ra hai đường chéo bằng nhau, AD = BC
c) Để ABDC là hình vuông thì AB = AC => Tam giác ABC là vuông cân.
Đây không phải câu hỏi linh tinh nha các bạn:
Thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
mn
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
a) Ta có AM là đường trung tuyến (gt)
\(\Rightarrow AM=\frac{1}{2}BC\)
Mà \(BC=30cm\)(gt)
\(\Rightarrow AM=\frac{1}{2}30=15cm\)
b) Tứ giác ABIC có:
\(BM=CM\)(gt)
\(AM=IM\)(gt)
\(\Rightarrow\)Tứ giác ABIC là hình bình hành
Trong hình bình hành ABIC có:
\(AM=\frac{1}{2}BC\)(chứng minh trên)
\(\Rightarrow AM=BM=CM\)
Mà \(AM=IM\)(gt)
\(\Rightarrow AM=BM=CM=IM\)
Ta lại có: \(BM+MC=BC\)
\(AM+MI=AI\)
Mà \(AM=BM=CM=IM\)(chứng minh trên)
\(\Rightarrow BC=AI\)
\(\Rightarrow\)Tứ giác ABIC là hình chữ nhật
c) Để hình chữ nhật ABIC là hình vuông thì \(BA=CA\)
\(\Leftrightarrow\Delta ABC\)cân tại A
Mà \(\widehat{A}=90^o\)
\(\Leftrightarrow\Delta ABC\)vuông cân tại A
Vậy để tứ giác ABIC là hình vuông thì tam giác ABC phải vuông cân tại A
a) Ta có MB = MC, DB = DA
⇒ MD là đường trung bình của ΔABC
⇒ MD // AC
Mà AC ⊥ AB
⇒ MD ⊥ AB.
Mà D là trung điểm ME
⇒ AB là đường trung trực của ME
⇒ E đối xứng với M qua AB.
b) + MD là đường trung bình của ΔABC
⇒ AC = 2MD.
E đối xứng với M qua D
⇒ D là trung điểm EM
⇒ EM = 2.MD
⇒ AC = EM.
Lại có AC // EM
⇒ Tứ giác AEMC là hình bình hành.
+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.
Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.
c) Ta có: BC = 4cm ⇒ BM = 2cm
Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm
d)- Cách 1:
Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC
Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.
- Cách 2:
Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM
⇔ ΔABC có trung tuyến AM là đường cao
⇔ ΔABC cân tại A.
Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.
a ) BC = 13 cm
AM = 6,5 cm
b) ta có
tam giác ABC vuông tại A , AM là trung tuyến
nên BC = 2AM
mà D đối xứng với A qua M
nên AD = 2 AM
suy ra : BC =AM
c) để ABCD là hình vuông thì tam giác ABC phải vuông cân
ek pan ghi ro cach giai di