Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: EF=căn 3^2+4^2=5cm
Xét ΔDEF có EA là phân giác
nên AD/AF=ED/EF=4/5
b: Xét ΔEDA vuông tại D và ΔEHK vuông tại H có
góc DEA=góc HEK
=>ΔEDA đồng dạng với ΔEHK
=>ED/EH=EA/EK
=>ED*EK=EH*EA
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
Giải: a) Ta có: DE2 + DF2 = 32 + 42 = 9 + 16 = 25
EF2 = 52 = 25
=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)
b) Xét t/giác DEF có DI là đường trung tuyến
=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)
c) Ta có: DI = IF => t/giác DIF là t/giác cân
có IK là đường cao
=> IK đồng thời là đường trung tuyến
=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)
Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:
DI2 = IK2 + DK2
=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25
=> IK = 1,5 (cm)
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
Câu a) xét 2 tam giác IED và tam giác DEF
góc EID= góc EDFo=90 độ
góc DEF CHUNG
DO ĐÓ : TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁC DEF
CÂU B)
ÁP DỤNG ĐỊNH LÍ PYTAGO TRONG TAM GIÁC DEF CÓ
EF^2=DE^2+DF^2
=) EF^2= 3^2+4^2=25
=) EF= CĂN 25=5 CM
LẠI CÓ TAM GIÁC IED ĐỒNG DẠNG VỚI TAM GIÁc DEF(cm câu a)
=) ED/EF = ID/DF HAY 3/5 = ID/ 4
(=)ID= 3*4/5= 2,4 (CM
CÂU C)
TA CÓ : TAM GIÁC IED đồng dạng với tam giác DEF (CM CÂU A)
=) IE/DE = ED/EF
hay DE^2=IE*EF
12 cho ai giải đc
xét tam giác DEI và tam giác FED ta có :
góc E chung
góc DIE = góc FDE (=90 độ)
=> tam giác DEI đồng dạng với tam giác FED (g.g )
=> DE/EF=EI/ED =>.DE2=EF.EI