Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=90-40=50 độ
sin C=AB/BC
=>7/BC=sin50
=>BC=9,14(cm)
=>\(AC\simeq5,88\left(cm\right)\)
b: góc B=90-30=60 độ
sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>AC=8*căn 3(cm)
c: BC=căn 18^2+21^2=3*căn 85(cm)
tan C=AB/AC=6/7
=>góc C=41 độ
=>góc B=49 độ
d: AB=căn 13^2-12^2=5cm
sin C=AB/BC=5/13
=>góc C=23 độ
=>góc B=67 độ
A B C D
Ta có \(\tan50=\frac{AC}{AB}\Rightarrow AB=\frac{AC}{\tan50}\approx12.5\left(cm\right)\)
Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+12,5^2}\approx19,6\left(cm\right)\)
Có \(\widehat{C}=180^0-\widehat{A}-\widehat{B}=40^0\)
Vì CD là phân giác trong của góc C \(\Rightarrow\widehat{ACD}=20^0\)
\(\Rightarrow CD=\frac{AC}{\cos20}\approx16\left(cm\right)\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
a: góc C=50 độ
Xét ΔABC vuông tại A có sin C=BA/BC
nên \(BC=7:sin50^0=9.14\left(cm\right)\)
=>\(AC=\sqrt{BC^2-AB^2}=5.88\left(cm\right)\)
b: góc B=90-30=60 độ
Xét ΔBAC vuông tại A có sin C=AB/BC
nên AB/BC=1/2
=>AB=8cm
=>\(AC=8\sqrt{3}\left(cm\right)\)