K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Kẻ \(AH\perp BC\) tại H

Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)

Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A

\(\Rightarrow AD\perp AE\)

Áp dụng hệ thức lượng vào tam giác vuông AED có:

\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))

\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)

Vậy...

b) Vì AM và AN lần lượt là hai tia phân giác của hai góc trong và ngoài tại đỉnh A của ΔABC

nên AM và AN lần lượt là hai tia phân giác của hai góc kề bù

\(\widehat{MAN}=90^0\)

Xét ΔAMN có \(\widehat{MAN}=90^0\)(cmt)

nên ΔAMN vuông tại A(Định nghĩa tam giác vuông)

Suy ra: A,M,N cùng nằm trên đường tròn đường kính NM(Định lí)

mà A,M,N cùng nằm trên (O)

nên MN là đường kính của đường tròn (O)

hay O,M,N thẳng hàng(đpcm)

29 tháng 10 2021

b: Xét ΔACB vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(1\right)\)

Xét ΔABK vuông tại A có AK là đường cao

nên \(AB^2=BK\cdot BD\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)